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Zech’s question:
Consider a system of 3 Josephson junctions coupled by capacitors.  How do the 

energy levels change if the junctions are connected in a symmetric way?
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Zech’s conclusion:
The first excited states become degenerate.

My question:

How do we find the degeneracies of an arbitrary system of such junctions?

My conclusion:

Degeneracies are given by the dimensions of the invariant subspaces of 
unitary representations of the symmetry group of the system Hamiltonian.
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Systems with degenerate metastable states

Degeneracies of first-excited states for several other systems:
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What is a Josephson Junction?
♠  In a superconductor, electrons can become correlated to form Cooper pairs.
♠  Cooper pairs are bosons, thus many can occupy the same state at low temperature.

♠  A Josephson junction is a weak link placed between two superconductors.

a. another SIS junction
b. SNS (N is “normal conductor”)
c. point contact
d. microbridge
e. YBa2Cu3O7 grain boundary
f.  intrinsic junction in crystal
    structure of Bi2Sr2CaCu2O8

    high-Tc superconductor

above: superconductor-insulator-
superconductor. aka SIS, sandwich

Some examples from [1] are shown below:



Why study systems of Josephson junctions?
♠  Practical value:
     - Systems of multiple junctions can be used as components in a quantum computer.

     - Can be used to build S.Q.U.I.D.s and other high-precision sensors and amplifiers.
♠  Mathematical value:

     - The mathematical techniques used to describe systems of junctions are also used to         

       describe other composite quantum systems, e.g. molecules and crystals.

     - Approximating the Schrödinger equation requires advanced numerical techniques.
♠  Theoretical value:

     - Junction systems provide tests for theories of decoherence and teleportation.

     - Josephson junctions are macroscopic examples of quantum entanglement.

10 m

     Bohr diameter ~ 10-10 meter                        Josephson junction ~ 10-5 meter                                  Cat ~ 100 meter

If the superposition principle really works, is it possible to entangle a cat?



Josephson’s Equations à la Feynman:  Two Buckets of Bosons

The image at right is from [2].  In this 
experiment, two containers of liquid 
3He are separated by a small aperture.

A Josephson junction consists of two 
superconductors separated by a thin 
dielectric barrier.  Both are examples of 
weakly coupled macroscopic systems.

Ψ(t) = αΨ1(0) + βΨ2(0)

Ψ(t) =
√

n1e
ıφ1Ψ1(0) +

√
n2e

ıφ2Ψ2(0)

||α||2 = n1 ||β||2 = n2

∂tΨ = − ı

!ĤΨ ⇔
[

α̇
β̇

]
=
−ı

!

[
E1 K
K E2

] [
α
β

]
Schrödinger equation:

Composite wavefunction in terms of individual wavefunctions:



Josephson’s Equations, part I

The rate of change of particle density in each bucket is:

ṅ1 = α∗(α̇) + α(α̇)∗ ṅ2 = β∗(β̇) + β(β̇)∗

[
α̇
β̇

]
= −ı

!

[
E1 K
K E2

] [
α
β

]
Feynman:                                                                  Schrödinger:

Ψ(t) = αΨ1(0) + βΨ2(0)
α =

√
n1eıφ1 β =

√
n2eıφ2

ı! ṅ1 = E1||α||2 + Kα∗β − E1||α||2 −Kαβ∗ = K(α∗β − αβ∗)

ṅ1 = −ı
K

!
√

n1n2(eı(φ2−φ1) − eı(φ1−φ2))ṅ1 = 2
K

!
√

n1n2 sin(φ2 − φ1)

Is = −2e ṅ2 = 2e ṅ1 = 4eK
!
√

n1n2 sin(φ2 − φ1)

Electrical current in terms of particle density is: Is = −qṅ1 = (2e)ṅ1

If the buckets contain enough particles that                    constant, then we can write:
√

n1n2 ≈

Is = I0 sin(γ) γ ≡ φ2 − φ1 I0 ≡ 4e
K

! n1 · (volume of subsystem 1)



Josephson’s Equations, part II

The rate of phase change of the particles in each bucket is:

[
α̇
β̇

]
= −ı

!

[
E1 K
K E2

] [
α
β

]
Feynman:                                                                  Schrödinger:

Ψ(t) = αΨ1(0) + βΨ2(0)
α =

√
n1eıφ1 β =

√
n2eıφ2

The voltage across the junction is given by:

φ̇1 = −ı
2||α||2 (α∗α̇− α(α̇)∗) φ̇2 = −ı

2||β||2 (β∗β̇ − β(β̇)∗)

qV = −2eV = E2 − E1

α̇ =
−ı

! (E1α + Kβ) β̇ =
−ı

! (Kα + E2β) φ̇1 =
−ı

2!||α||2 (α∗(−ıE1α− ıKβ)− α(ıE1α
∗ + ıKβ∗))

! φ̇1 = −E1 −
1

2||α||2 K(α∗β + αβ∗) !φ̇1 = −E1 −
1

2n1
K
√

n1n2(eı(φ2−φ1) + eı(φ1−φ2))

Assuming an equal number of particles in each bucket and using                         ,

!(φ̇2 − φ̇1) = (E1 − E2) + K(
√

n1n2
n1

−
√

n1n2
n2

) cos (φ2 − φ1)

γ ≡ φ2 − φ1

V =
Φ0

2π
γ̇ Φ0 ≡

h

2e
where the constant       is called the flux quantum.Φ0



Resistor + Capacitor + Shunted Junction (RCSJ) model

RCSJ diagram taken from [3]R channel:  Current conducts through 
the junction barrier as if the entire 
junction was a classical resistor.

C channel:  Charge accumulates on 
either side of the barrier as if the 
junction was a classical capacitor.

What happens if an external power supply drives current through a junction?
The RCSJ model treats a single junction as three parallel channels:

X channel:  Electron pairs tunnel through through the barrier via the Josephson effect.          
(There is no classical circuit element corresponding to this, hence the X.)

If the barrier is a strong insulator, current through the R channel becomes negligible.

Kirchhoff’s circuit laws then impose constraints on the system:

(The voltage across every channel is equal, so we refer to “the” junction voltage.)

Ibias = Is +
d

dt
Q Vbias = Vs =

Q

CJ



RCSJ Equation of Motion

Substituting Josephson’s equations into Kirchhoff’s laws, we find:

Is = I0 sin(γ)

V =
(

Φ0
2π

)
γ̇

Ib = I0 sin(γ) + CJ

(
Φ0
2π

)
γ̈

           Josephson:                            Kirchhoff:

Ib = Is + d
dtQ

Q = CJV

What should we choose for the conjugate momentum and Hamiltonian of this system?

3600 pendulum with 
applied torque Γ

Lagrangian:

Conjugate momentum:

Hamiltonian:

Γ = mgr sin(γ) + mr2(γ̈)

p = (∂L
∂γ̇ ) = mr2(γ̇)

L = 1
2mr2(γ̇)2 + mgr cos(γ) + Γγ

H = 1
2mr2(γ̇)2 −mgr cos(γ)− Γγ

Equation of motion:

Consider a completely different system with an identical equation of motion:



RCSJ Hamiltonian and conjugate momentum

These systems are equivalent under the following replacement of constants:

CJ ↔ 1
m

(
Φ0
2π

)
↔ mr I0 ↔ g Ib ↔ Γ

mr = F
m

H = 1
2CJ

(
Φ0
2π

)2
(γ̇)2 − I0

(
Φ0
2π

)
cos(γ)−

(
Φ0
2π

)
Ibγ

p = CJ

(
Φ0
2π

)
(γ̇) = CJV

Each term in the Hamiltonian has a physical interpretation as a type of energy:

H = 1
2CJV 2 − I0

(
Φ0
2π

)
cos(γ)−

(
Φ0
2π

)
Ibγ

capacitor energy - energy input from power supply?

kinetic energy - energy input from external torquegravitational potential energy

??

H = 1
2mr2(γ̇)2 −mgr cos(γ)− Γγ p = mr2(γ̇)



Phase interference between coupled quantum systems

The energy term in the RCSJ Hamiltonian has a purely quantum-mechanical origin.

H = 1
2CJV 2 − I0

(
Φ0
2π

)
cos(γ)−

(
Φ0
2π

)
Ibγ

capacitor energy - energy input from power supply???

1√
2
(Ψ1 + Ψ2) 1√

2
(Ψ1 −Ψ2)

What does the middle term represent?  Look closely at the energies in this diagram [4] :

The composite wavefunction for two particles 
in adjacent wells is written as a sum of single-
particle states.  For the ground states, the in-
phase combination has lower energy!

The out-of-phase state requires a node within 
the barrier.  This node is energetically costly.

Feynman’s junction model assumes that each 
subsystem is in its ground state, so we ignore 
the higher-energy substates.  Those states 
may be useful for generalizing Feynman’s 
model in a future project ... but not today.

symphonic energy



The washboard potential

H = T + W T = p2

2µ W = −
(

Φ0
2π

)
[I0 cos(γ) + Ibγ]

The RCSJ Hamiltonian resembles that of a particle in a washboard-shaped potential:

♠  If     is a relative phase, why isn’t the washboard potential 2π-periodic?

♠  The coordinate     and its conjugate momentum     are specified simultaneously!  

A coordinate and its conjugate momentum should not commute:  

γ

γ p

!10 !5 5 10
Γ

!4

!2

2

4
W

!10 !5 5 10
Γ

!4

!2

2

4
W

[γ, p] = ı! != 0

There are a few perplexing features about this Hamiltonian, however.

Ib = 0.3 I0Ib = 0



Decompactification of the pendulum

It may be helpful to consider the pendulum system again.  Split the Hamiltonian into:

H = E(t)− Γγ E(t) =
p2

2mr2
−mgr cos(γ)

The total Hamiltonian is constant in time, but the individual components need not be.  
E(t) can increase without bound for certain initial conditions and applied torques.

♠  If the initial energy E(0) is low and applied     
    torque is weak, the pendulum oscillates.

♠  If E(0) or applied torque is slightly larger, 
    the oscillations become nonlinear.

♠  If E(t) is ever greater than mgr , the 
    pendulum becomes unbound! 

Once the pendulum has gone “over the top,” it is always unbound.  With no friction to 
stop it, the angular momentum can increase forever (or until the pendulum breaks).
In topology-speak, the pendulum’s phase-space trajectory becomes noncompact.



Decompactification of the washboard potential

♠  A quantum pendulum behaves even worse than a classical one - it can tunnel into 
a free-spinning state even if the applied torque is too weak to overcome gravity! 

♠  Spectroscopy experiments on Josephson junctions show a similar behavior.  
Junctions can switch from a zero-voltage state to a state with measurable voltage 
difference even when driven by currents less than the junction’s critical current.

♠  The wavefunctions on either side of the barrier then have different energies.  Their 
phase factors           steadily drift apart, scrambling their earlier phase coherence.e−ıωt

driven quantum pendulums can  
tunnel over a finite energy barrier...

driven Josephson junctions can also 
tunnel over a finite energy barrier. [5]



NUMERICAL DEMONSTRATIONS

please allow the presenter a few moments to set up



Quantum mechanics of the washboard potential

We now return to the problem of forming a quantum-mechanical Hamiltonian with
the correct commutation relations for the RCSJ model.  From before, we know:

Is = I0 sin(γ)

V =
(

Φ0
2π

)
γ̇

           Josephson:                            Kirchhoff:

Ib = Is + d
dtQ

Q = CJV

♠  Kirchhoff’s laws and the ideal capacitor formulas are valid in classical physics.
It seems reasonable to assume they apply to expectation values, not operators.

♠  The phase coordinate and its conjugate momentum cannot both be known to 
arbitrary precision.  Perhaps Josephson’s equations are really operator equations.

Ehrenfest’s theorem (paraphrased): Put angle brackets around Heisenberg’s 
equations to see if a Hamiltonian produces the correct classical behavior. 

d
dt 〈Q̂〉 = ı

! 〈[Ĥ, Q̂]〉 = ı
!

(
Φ0
2π

)−1 〈[Ĥ, p̂]〉



Does the washboard potential pass Ehrenfest’s test?

d
dt 〈Q̂〉 = ı

! 〈[Ĥ, Q̂]〉 = ı
!

(
Φ0
2π

)−1 〈[Ĥ, p̂]〉

Use the canonical commutation relation                    and do some algebra:

[Ŵ , p̂]Ψ = Ŵ p̂Ψ− p̂ŴΨ = −ı!Ŵ (∂γΨ) + ı!∂γ(ŴΨ) = ı!
(

Φ0

2π

) (
I0 cos(γ)

(
∂γΨ

)
+ Ibγ

(
∂γΨ

)
− ∂γ

(
I0 cos(γ)Ψ + IbγΨ

))

∂γ

(
I0 cos(γ)Ψ + IbγΨ

)
= −I0 sin(γ)Ψ + I0(cos(γ))

(
∂γΨ

)
+ IbΨ + Ibγ

(
∂γΨ

)

[Ŵ , p̂] = ı!
(

Φ0
2π

)
(I0 sin(γ)− Ib)

d
dt 〈p〉 =

(
Φ0
2π

)
(−I0〈sin(γ)〉 + 〈Ib〉) =

(
Φ0
2π

)
(−〈Is〉 + 〈Ib〉)

CJ
d
dt 〈V 〉 + 〈Is〉 = 〈Ib〉

[γ̂, p̂] = ı!

V̂ = 1
CJ

(
Φ0
2π

)−1
p̂ ⇒

Yes!  The Hamiltonian and conjugate momentum used earlier were wrong but 
useful.  By replacing the coordinates with operators, we can describe a quantum 
system whose expectation values are consistent with classical circuit theory.

[ V̂ , Îs ] =
(

Φ0
2π

)
µ−1I0 [ −ı!∂γ , sin(γ) ] = −ı!(Φ0

2π )µ−1I0 cos(γ) ∆2
V ∆2

Is
≥

(
1
2ı 〈[V̂ , Îs]〉

)2
= 1

4!2
( (

Φ0
2π

)
µ−1I0

)2
〈cos(γ)〉2∆V ∆Is ≥ 1

2!
(

Φ0
2π

)
µ−1I0|〈cos(γ)〉|

♠  Question: If voltage and supercurrent are operators, do they commute?
♠  Answer:  No.  In fact, these two operators obey an uncertainty principle: 

♠  CHALLENGE:  Think of an experiment to (dis)prove this uncertainty relation.



Metastable states of the washboard potential

The generalized uncertainty principle allows us to define metastable states:

bi
nd

in
g 

en
er

gy
 (j

ou
le

s)

γrelative phase

∆E∆t ≥ 1
2! ∆t ≡ ∆A

∣∣∣ d
dt 〈A〉

∣∣∣
−1

⇒
∣∣∣ d
dt 〈A〉

∣∣∣ ≤ 2
! (∆E∆A)

Here A is any operator whatsoever that does not explicitly depend on t .
If the energy “width”        of a state is small, then <A> evolves slowly.

A state in which the density operator                  evolves slowly is metastable.

∆E

Numerically estimated metastable 
junction states using data from [6] :
CJ ≈ 4.8pF I0 ≈ 14.779µA

Ib ≈ 14.630µA ≈ 0.99I0

ρ̂ = Ψ∗Ψ



Metastable state energy levels

The energy gaps between the metastable states shown here are ~ 2.5 10-24 joules.
To prevent thermal interference, experiments must be cooled well below 0.1 K .

bi
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in
g 

en
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gy
 (j

ou
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s)

γrelative phase

CJ ≈ 4.8pF I0 ≈ 14.779µA Ib ≈ 14.630µA ≈ 0.99I0

kT = E1 − E0 ⇒ T ≈ 0.18K hf = E1 − E0 ⇒ f ≈ 4GHz

♠  The energy levels are not evenly 
spaced:  (E2 - E1) = 0.94 ( E1 - E0 )

♠  Mean lifetimes for weakly-bound 
states at T ~ 10mK and Ib > 0.9(I0) are 
in the range 100 µs → 1 ns.

♠  Phase coherence for entangled 
states is shorter-lived than the states 
themselves: 1 ns - 100 ns is common 
for phase qubits.

♠  Resonant frequencies are near 5 
GHz, which unfortunately coincides 
with 802.11a wireless internet!  The 
1-3GHz range is even more crowded.

E0 = -7.964 10-24 joules      E1 = -5.373 10-24 = E0 + 2.591 10-24      E2 = -2.941 10-24 = E1 + 2.432 10-24



Multiple-junction systems: phase-coupled qubits

Quantum computing requires the ability to transfer, store, and recall entanglement.
One way to do this is by coupling systems of Josephson junctions with capacitors:

external current source

coupling capacitor

Josephson junction (RCSJ model, neglect R)

ground

With three junctions, two different circuit diagrams are possible:

Serial 3-junction system “Triangle” 3-junction system



Dynamics of multiple-junction systems

Solving (or approximating) the time-dependent behavior of systems of junctions is 
a difficult task.  The first step is to write down all the terms in the Hamiltonian:

ı!∂tΨ = 1
2

(
Φ0
2π

)2
pT [C]−1p + W1(γ1) + W2(γ2) + · · ·

pT = [p̂1, p̂2, · · · ] Ŵn = −
(

Φ0
2π

)
[I0 sin(γn) + Inγn]

Unfortunately, the pn’s here are not the operators conjugate to      !
Finding the correct conjugate momenta takes a bit more work.

γn

The capacitor terms can be written more conscisely using a capacitance matrix 
and row/column vectors of pn operators.  The Schrödinger equation then becomes:

p̂n = CJ

(
Φ0
2π

)
V̂n

Ĥ = 1
2CJ V̂ 2

1 + 1
2CJ V̂ 2

2 + · · · + 1
2CC(V̂2 − V̂1)2 + · · · + Ŵ1 + Ŵ2 + · · ·



Graph theory short-cut to the multi-junction Hamiltonian

♠  The conjugate momenta can be found using the same “pseudo-classical” 
Lagrangian method as before, but the results can get somewhat complicated.

♠  To simplify things, replace each circuit diagram with a simple undirected graph:

12

1

2 3

1 2 3



Finding the capacitance matrix

12

1

2 3

1 2 3

Each of these graphs can be represented by a unique Laplacian matrix     :

Lij ≡






# of things connected to j
−1
0

if i = j
if i is connected to j
otherwise

L

L =




1 −1 0
−1 2 −1
0 −1 1





L =
[

2 −1
−1 2

]

Cij = CJ δij + CC LijThe capacitance matrix can be found by writing 

L =




2 −1 −1
−1 2 −1
−1 −1 2







The Schrödinger equation for multiple junctions

Dividing the capacitance matrix by CJ produces a dimensionless matrix M :

Mij = δij + χLij where χ ≡ CC
CJ

The M matrix can be used to write the conjugate momenta      in terms of      :p̂′
n p̂n

p̂n = CJ

(
Φ0
2π

)
V̂n pT = [p̂1, p̂2, · · · ] pT ≡ [p̂′

1, p̂
′
2, · · · ] ⇒ pi = Mijpj

Ĥ = 1
2µ pT [M ]p + Ŵ1 + Ŵ2 + · · ·

The Hamiltonian can also be written in terms of the M matrix and p column vector: 

Combining these expressions, we can (at last) write the Schrödinger equation:

ı!∂t = − !2

2µ [∂γ1 , ∂γ2 , · · · ]



 M−1








∂γ1

∂γ2

...



 + W (γ1) + W (γ2) + · · ·

where we have written the canonical momentum operators as                       .p̂′
n = −ı!∂γn



Example: the serial 3-junction

As an example, find the Schrödinger equation using the Laplacian-matrix method:

p̂n = CJ

(
Φ0
2π

)
V̂n pi = Mijpj Ĥ = 1

2µpT [M ]−1p + Ŵ1 + Ŵ2 + · · ·

1 2 3 L =




1 −1 0
−1 2 −1
0 −1 1



 M =




1 + χ −χ 0
−χ 1 + 2χ −χ
0 −χ 1 + χ





ı!∂t = − !2

2µ [∂γ1 , ∂γ2 , ∂γ3 ]





1+3χ+χ2

1+4χ+3χ2
χ

1+3χ
χ2

1+4χ+3χ2
χ

1+3χ
1+χ
1+3χ

χ
1+3χ

χ2

1+4χ+3χ2
χ

1+3χ
1+3χ+χ2

1+4χ+3χ2








∂γ1

∂γ2

∂γ3



 + W (γ1) + W (γ2) + W (γ3)

M -1 can be cleaned up (some) by defining a coupling constant                                  :κ ≡ CC
CJ+CJ

= χ
1+χ

ı!∂t = − !2

2µ

1
1 + 2κ

[∂γ1 , ∂γ2 , ∂γ3 ]




1 + κ− κ2 κ κ2

κ 1 κ
κ2 κ 1 + κ− κ2








∂γ1

∂γ2

∂γ3



 + W (γ1) + W (γ2) + W (γ3)



Degeneracy and avoided crossings

Metastable states can exist in multiple-junction systems, and they can be written 
as linear combinations of single-junction direct product states.  For example:

12 ı!∂t = − !2

2µ

1
χ(χ + 2)

[∂γ1 , ∂γ2 ]
[

1 + χ 1
1 1 + χ

] [
∂γ1

∂γ2

]
+ W (γ1) + W (γ2)

If the labels 1,2 are switched, the Hamiltonian is unchanged.  If we define an 
operator    = “switch labels 1 and 2” then                   .  Eigenstates of     are :Ŝ [Ĥ, Ŝ] = 0 Ŝ

Ŝ 1√
2

(|10〉+ |01〉) = 1√
2

(|10〉+ |01〉) Ŝ 1√
2

(|10〉 − |01〉) = 1√
2

(−|10〉+ |01〉)

spectroscopy data from [6]

These states are the first-excited metastable states of the two-junction system.

♠  Resonances of the two-junction system are 
plotted at left as a function of bias current #2.

♠  The energy levels appear to repel each other;  
apparently this system forbids degenerate 
metastable states.



Symmetries of multiple-junction systems

♠  Solving the Schrödinger equation for N junctions is a formidable task.

♠  If the solutions can be written as linear combinations of single-junction 
solutions, then the problem simplifies considerably.

♠  Symmetries of the Hamiltonian tell us how to write these linear combinations.  
These symmetries can also determine which combinations are degenerate.

1

2 3

Example:  The triangle symmetry group is S3 , the permutation group of 3 objects.

♠  3 rotations (including the identity rotation)

♠  3 parity-reversed rotations
1

23



The triangle system continued

Every transformation in S3 leaves the Hamiltonian unchanged.  Each of these 
transformations can be represented by a matrix acting on                     :[γ1, γ2, γ3]T

R213 =




0 1 0
1 0 0
0 0 1



 R132 =




1 0 0
0 0 1
0 1 0



 R321 =




0 0 1
0 1 0
1 0 0





R123 =




1 0 0
0 1 0
0 0 1



 R231 =




0 0 1
1 0 0
0 1 0



 R312 =




0 1 0
0 0 1
1 0 0





Energy eigenstates are found by looking for invariant subspaces of these matrices.

1√
3

(
|100〉 + |010〉 + |001〉

)
is unchanged by any of these matrices.

1√
2

(
|100〉 − |001〉

)

}
Linear combinations of these states form an 
invariant subspace.  Vectors in this space stay 
in the space when acted on by an S3 matrix.

1√
6

(
|100〉 − 2|010〉+ |001〉

)

The invariant subspace dimensions of S3 are { 1 , 2 } .



Invariant subspaces and degeneracy

If a Hamiltonian has a symmetry group with an invariant subspace, all the 
states in that subspace must be degenerate.  Here’s a sketch of the proof:

♠  Every finite group can be represented by some set of unitary matrices.

♠  If the Hamiltonian has a group of symmetries, that group can be 
represented by unitary matrices that all commute with the Hamiltonian.

♠  If V is an invariant subspace with dimension > 1, then two linearly 
independent states can be transformed into each other by a unitary matrix that 
commutes with the Hamiltonian.  These states must have the same energy.

Therefore states in an invariant subspace are degenerate.
Here are the systems from the first slide and their invariant subspace dimensions:

        {1,2}                     {1,3}                    {1,4}                     {1,5}                     {1,6}



Invariant subspaces and degeneracy: a familiar example

♠  This Hamiltonian depends only 
on r, so it is rotation-invariant.

♠  The symmetry group of 3D 
rotations is the Lie group SO(3).

♠  Invariant subspaces of SO(3) 
irreps have dimension 2 l + 1.

♠  The degeneracies of this 
system are plotted to the right.
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Invariant subspace dimensions for degree-N representations

Here are the earlier results lalong with each system’s permutation symmetry group:

1 2 3 4

12

3 4

1

2

3

4

1 2

3

4

1

2

3

4

NO

NO

YES

YES

(YES)2

MAYBE {1,1,1,1}

{1,1,2}

{1,1,1,1}

{1,1,2}

{1,1,1,1}

{1,3}

1 2 3 4 5 6 7 8 9 10 NO {1,1,1, ... }

(YES)N-2 {1,N-1}

S2

S2 S2

S2 ⊗ S2

S3 S4

D4 SN



First steps towards time-dependent solutions

♠  For an mth-excited state, there are                  different direct-product states.  
These states transform under larger-degree group representations.

♠  The predicted degeneracies can be tested by spectroscopy experiments.  
Our real goal, however, is to know time-dependent behavior of these systems.

♠  The group-theoretical methods here can be used to write system states in 
terms of direct-product states, but this is only a first step.  Numerical methods 
and perturbation theory can be applied to find more general behavior.

(N+m−1)!
m!(N−1)!

Hypercube system graph

Symmetry group:  C4

Order of group:  384

Graph spectrum:  {1,1,4,4,6}

Degeneracy:  ?

Direct-product states:  ?

Tetrahedron direct-product states:

1
2 (|1000〉 + |0100〉 + |0010〉 + |0001〉)

1√
2

(|1000〉 − |0100〉)

1√
2

(|1000〉 − |0010〉)

1√
2

(|1000〉 − |0001〉)

{
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