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ABSTRACT

Stochastic Models of Quantum Decoherence

Sam Kennerly

Suppose a single qubit is repeatedly prepared and evolved under imperfectly-controlled

conditions. A drunk model represents uncontrolled interactions on each experimental trial

as random or stochastic terms in the qubit’s Hamiltonian operator. Time evolution of states

is generated by a stochastic differential equation whose sample paths evolve according to

the Schrödinger equation. For models with Gaussian white noise which is independent of

the qubit’s state, the expectation value of the solution obeys a master equation which is

identical to the high-temperature limit of the Bloch equation. Drunk models predict that

experimental data can appear consistent with decoherence even if qubit states evolve by

unitary transformations. Examples are shown in which reversible evolution appears to cause

irreversible information loss. This paradox is resolved by distinguishing between the true

state of a system and the estimated state inferred from an experimental dataset.
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0 ASSUMPTIONS AND NOTATION

0.1 Assumptions

The following simplifications will be assumed throughout this thesis. These assumptions

sacrifice generality for the sake of clarity, simplicity, and timeliness.

Orthodox quantum mechanics

This thesis is not intended to advocate or refute any particular interpretation of quan-

tum mechanics. In particular, it does not attempt to explain wavefunction collapse as a

form of decoherence. However, one must state some assumptions or one has nothing to

calculate. Unless explicitly stated otherwise, assume the axioms stated in von Neumann’s

Mathematical Foundations of Quantum Mechanics.[1]

Finite-dimensional observables

The Hilbert space on which state vectors are defined is assumed to be isomorphic to CN

where N is a natural number. This assumption ensures that linear operators can be repre-

sented by N ×N complex matrices, and it avoids the need for infinite-dimensional operator

theory. For the most part, only N = 2 is considered because C2 is the natural Hilbert space

for a single qubit. Systems with N > 2 are briefly considered in Appendix B.

No relativity

Time evolution of unobserved systems is assumed at all times to obey the Schrödinger equa-

tion or its density-matrix equivalent, the Liouville-von Neumann (LvN) equation. Special

and general relativity are neglected, as is quantum field theory. Conclusions in this thesis

may therefore suggest, but not prove, hypotheses regarding relativistic systems.
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0.2 Notation

General notation

• Definitions are indicated by bold text and/or the symbol ≡.

• Vague, heuristic, or otherwise ill-defined terms are indicated by “quotes.”

• ⇒, ⇐, ⇔ denote implies, is implied by, and is true if and only if, respectively.

• N,Z,R,C are natural numbers, integers, reals, and complex numbers, respectively.

• {} denote a set with | denoting conditionals. For example, S = {2n | n ∈ N, 2n > 8}
is the set of all even natural numbers which are greater than 8.

• ∈ and 6∈ denote is an element of and is not an element of, respectively.

• If f is a function, then f(t) is the number returned by f given input t. This distinction

avoids ambiguous (though usually harmless) terminology such as “the function f(t).”

Vector and matrix notation

The terms matrix and linear operator are used interchangeably, as are the terms vector and

column. These abuses of notation are committed frequently in this thesis. To be precise:

matrices and columns are boxes of numbers which are the components of an operator or

vector with respect to a basis. If one chooses a different basis for a vector space, then vectors

in that space and operators acting on that space do not change. Their components change,

as do the matrices and columns which represent them.

The symbol RN conventionally denotes the set of all real N -tuples. Here RN is also assumed

to be a vector space with the usual Euclidean dot product as its inner product. If {an}, {bn}
are components of a and b with respect to an orthonormal basis, then:

a · b ≡
N∑
n=1

anbn |a| ≡
√

a · a

Similarly, CN is assumed to be equipped with the complex Euclidean inner product:

〈ψ|ϕ〉 ≡
N∑
n=1

ψ∗nϕn ||ψ|| ≡
√
〈ψ|ψ〉

Other vector and matrix notation conventions are shown in Table 1.
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Table 1: Vector and matrix notation.

object example notes

real inner product space R3

vector in RN r bold letter

adjoint vector in RN rT T indicates transpose

inner product of RN r · s use real Euclidean inner product

complex inner product space C2

vector in CN |Ψ〉 Dirac ket

adjoint vector in CN 〈Ψ| Dirac bra

inner product of CN 〈Ψ|ϕ〉 use complex Euclidean inner product

linear operator or matrix Â hat over letter

multiplicative identity matrix 1̂ diagonal elements are 1, off-diagonals are 0

adjoint matrix Â† equals conjugate transpose (ÂT )∗

matrix trace Tr[Â] sum of diagonal elements

matrix determinant Det[Â] product of (algebraic) eigenvalues

matrix rank Rank[Â] number of linearly-independent columns

Special matrices

Pauli matrices:

σ̂x ≡

0 1

1 0

 σ̂y ≡

0 −ı

ı 0

 σ̂z ≡

1 0

0 −1


3D rotation generators (not quaternions!):

Î ≡


0 0 0

0 0 −1

0 1 0

 Ĵ ≡


0 0 1

0 0 0

−1 0 0

 K̂ ≡


0 −1 0

1 0 0

0 0 0


Cross product as a linear operator:

if r =


x

y

z

 then [r×] ≡


0 −z y

z 0 −x

−y x 0

 = xÎ + yĴ + zK̂
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Random variables and stochastic processes

Table 2: Random variable and stochastic process notation.

object example notes

probability of event P [E ] pk may be used for discrete distributions

expectation value of X E[X] also called mean

variance of X Var[X] defined as E[(X − E[X])2]

filtration F
conditional expectation E[X|F ] pronounced “mean of X over F”

conditional probability P [E|F ] pronounced “probability of E given F”

expectation over natural filtration r̄ bar over random variable

stochastic process at time t rt r(t) is reserved for deterministic functions

Itō integral
∫
xt dW dW means “use Itō calculus”

Stratonovich-Fisk integral
∫
xt ◦ dW ◦ dW means “use SF calculus”

Index conventions

Table 3: Index conventions.

name symbol how many of them?

sample times {tj} J (or J + 1, if t0 is included)

possible Hamiltonians {Ĥk} K (or infinte)

possible states {ρ̂k} K (or infinite)

components of state vector |Ψ〉 {Ψn} N

components of real vector x {xm} M ≡ N2 − 1

basis observables {Âm} N2 (Â0 = 1̂ always)
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1 QUBITS AS GEOMETRIC OBJECTS

Readers experienced with mixed states and Bloch vectors may prefer to briefly review the

Pauli coordinates in Section 1.2 or skip this chapter entirely. Most of the material in this

chapter can also be found in [2], in which Fano advocates the following viewpoint:

States with less than maximum information, represented by density matrices...

can be easily expressed in terms of the mean values of observables. Identifying

a state by means of such physical parameters brings out the operational basis

of the theory and helps in forming a mental picture.

This thesis focuses primarily on qubits, also known as two-level systems. A qubit is defined

here as a system with two linearly-independent energy eigenstates. The lower- and higher-

energy eigenstates are denoted |0〉 and |1〉. If both have the same energy eigenvalue, the

qubit is called degenerate, and any two orthogonal states can play the roles of |0〉 and |1〉.
(Methods for describing N -level systems, where N ∈ N, are in Appendix B.)

The ordered set {|0〉, |1〉} is used as a basis, called the energy basis, for a complex vector

space. A state vector is any linear combination of the form:

|Ψ〉 = α|0〉+ β|1〉 α, β ∈ C

The usual quantum rules of normalization and phase invariance are assumed:

1. A state vector is normalized if and only if 〈Ψ|Ψ〉 = |α|2 + |β|2 = 1. State vectors

representing physical states are assumed to be normalized.

2. A phase factor is any complex number with magnitude 1. Any phase factor can be

written in the form eıφ for some real φ ∈ [0, 2π). If |Ψ〉 = eıφ|Ψ′〉 for some φ ∈ [0, 2π),

then |Ψ〉 and |Ψ′〉 are assumed to represent the same physical state.

State vector components α, β can also be written in polar form:

|Ψ〉 = aeıφa |0〉+ beıφb |1〉

Phase invariance implies that multiplying |Ψ〉 by e−ıφa produces an equivalent state. Nor-

malization implies that b =
√

1− a2. Thus for any qubit state vector |Ψ〉 ∈ C2, it is possible
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to choose an equivalent |Ψ′〉 such that the |0〉 component is positive real:

|Ψ′〉 = a|0〉+ eıφ
√

1− a2|1〉 φ ≡ φb − φa

The Bloch sphere is a geometric representation of qubit states which is commonly used

in experiments. A qubit state is specified by two real coordinates (θ, φ):

|Ψ〉 = cos
(

1
2θ
)
|0〉+ eıφ sin

(
1
2θ
)
|1〉 θ ≡ 2 arccos

(
a
)

Here arccos is defined such that θ ∈ [0, π]. The set of all states forms a sphere with |0〉 at

the North pole θ = 0 and |1〉 at the South pole θ = π.1 A visualization of the Bloch sphere

is shown in Figure 1.1.2 Note that the lower-energy state is at the top of the sphere.

Figure 1.1: Bloch sphere depiction of qubit pure states.

To simplify comparison between theoretical predictions and experimental results, the Pauli

coordinates used in this thesis are closely related to Bloch-sphere coordinates. Both Pauli

and Bloch coordinates can be generalized in a natural way to include mixed states.

1Bloch-sphere coordinates are singular at the poles; the value of φ is undefined there.
2Image from Wikimedia Commons by author Glosser.ca. Licensed under Creative Commons BY-SA 3.0.
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1.1 Density matrices

Instead of |Ψ〉, a state can also be represented by a pure density matrix ρ̂Ψ ≡ |Ψ〉〈Ψ|:

ρ̂Ψ ≡ |Ψ〉〈Ψ| =

α
β


[
α∗ β∗

]
=

α∗α αβ∗

α∗β β∗β

 (1.1)

The symbol |Ψ〉〈Ψ| is Dirac notation for the outer product of a state vector |Ψ〉 with its

adjoint vector. If α, β are the components of |Ψ〉 with respect to the energy basis, then the

components of ρ̂Ψ can be calculated as shown in (1.1). A mnemonic for the action of |Ψ〉〈Ψ|
on a vector |ϕ〉 is “find the inner product 〈Ψ|ϕ〉 and return |Ψ〉 times that number.”

For any state vector |Ψ〉 ∈ C2, the corresponding density matrix ρ̂ = |Ψ〉〈Ψ| is a rank-1

projection operator. This means ρ̂Ψ necessarily has the following properties:

• ρ̂Ψ is a self-adjoint linear operator: ρ̂Ψ = ρ̂†Ψ.

• ρ̂Ψ has trace Tr[ρ̂Ψ] = 1 and determinant Det[ρ̂Ψ] = 0.

• |Ψ〉 is an eigenvector of ρ̂Ψ with eigenvalue 1.

• Any vector orthogonal to |Ψ〉 is an eigenvector of ρ̂Ψ with eigenvalue 0.

These properties remain true for N -level systems.[2] Pure density matrices provide a for-

malism for quantum mechanics which is equivalent to the usual state-vector formalism. A

major advantage of density matrices is the ability to also represent mixed states. An espe-

cially useful example from quantum statistical mechanics is the canonical density matrix in

Section 2.5 which is diagonal with Boltzmann-distributed diagonal elements.

Von Neumann used density matrices to represent systems for which “we do not even know

what state is actually present.”[1] If possible state vectors {|Ψ1〉, |Ψ2〉, . . .} are assigned

probabilities {p1, p2, . . .}, then represent the system with the following density matrix:

ρ̄ ≡ p1|Ψ1〉〈Ψ1|+ p2|Ψ2〉〈Ψ2|+ · · · = |Ψ1〉p1〈Ψ1|+ |Ψ2〉p2〈Ψ2|+ · · ·

Define a mixed state, also known as a statistical mixture, to be any nontrivial convex

combination of pure density matrices.3 (The pure states need not be orthogonal.) The bar

notation ρ̄ instead of ρ̂ is meant to suggest that ρ̄ is an average of pure states. A more

precise Fano-style interpretation of mixed states is postponed until Section 2.4.

3A convex combination is a linear combination such that all coefficients are non-negative real and sum
to 1. Here nontrivial means at least two of the {pn} are nonzero.
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Eigenvalues of a density matrix are non-negative real numbers which sum to 1. A density

matrix is pure if only one eigenvalue is nonzero; else it is mixed. Both pure and mixed den-

sity matrices are self-adjoint linear operators, but only pure density matrices are projection

operators. Projection operators must satisfy ρ̂2 = ρ̂, which is impossible unless eigenvalues

of ρ̂ all have magnitude 0 or 1. Two state vectors correspond to the same pure density

matrix ρ̂ if and only if they differ by an overall phase factor eıϕ for some ϕ ∈ R.

|Ψ〉 = eıϕ|Ψ′〉 ⇔ |Ψ〉〈Ψ| = |Ψ′〉〈Ψ′|

If Â is a matrix representing an observable, then the same matrix represents the same ob-

servable in density-matrix formalism. Suppose {|an〉} are eigenstates of Â with eigenvalues

{an}. The probability that a measurement returns the result an is:

|〈an|Ψ〉|2 = 〈an|Ψ〉〈Ψ|an〉 = 〈an|ρ̂Ψ|an〉

If state vectors evolve according to the Schrödinger equation, then density matrices evolve

according to the Liouville-von Neumann (LvN) equation:

ı~
d

dt
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
where Ĥ(t) is the system’s Hamiltonian operator at time t, and square brackets denote the

matrix commutator [Â, B̂] ≡ ÂB̂ − B̂Â. Table 1.1 summarizes the distinctions between

state-vector and density-matrix formalisms.

Table 1.1: State vector |Ψ〉 vs. pure density matrix ρ̂Ψ.

object state vector formalism density matrix formalism

pure state |Ψ〉 ρ̂Ψ = |Ψ〉〈Ψ|
probability of result an ||〈an|Ψ〉||2 〈an|ρ̂Ψ|an〉
expectation value 〈A〉 〈Ψ|Â|Ψ〉 Tr[Âρ̂Ψ]

time evolution ı~ d
dt |Ψ〉 = Ĥ|Ψ〉 ı~ d

dt ρ̂Ψ = [Ĥ, ρ̂Ψ]

1.2 Pauli and Bloch coordinates

Following Fano’s suggestion in [2], any pure or mixed qubit state can be represented by

expectation values (x, y, z) of three observables. A choice common among experimentalists

is to use whatever three observables are represented in the energy basis by Pauli matrices.[3]

This representation has several pratical advantages:



18

1. 3 real numbers are easier to visualize than a 2×2 complex self-adjoint matrix.

2. The vector r with Cartesian coordinates (x, y, z) equals the state’s Bloch vector.

3. The time-evolution equation can be written very simply: ~ṙ = H× r.

Table 1.2: Density matrices vs. Pauli coordinates

density matrices Pauli coordinates

pure state ρ̂ = |Ψ〉〈Ψ| r = (x, y, z)

mixed state ρ̄ =
∑
pkρ̂k r̄ =

∑
pkrk

observable A 2×2 self-adjoint matrix Â real Aw and R3 vector A

possible results A± eigenvalues of Â A± = 1
2(Aw ± |A|)

eigenstates with results A± eigenvectors of Â A± = ±A/|A|
probability of result A± Tr[|A±〉〈A±|ρ̂] 1

2(1 + r ·A±)

time evolution ~ d
dt ρ̂ = −ı[Ĥ, ρ̂] ~ṙ = H× r

Quantum observables are represented by self-adjoint linear operators. For qubit observables,

these operators can be represented by 2×2 self-adjoint complex matrices. For any qubit

observable Â, define four real Pauli coordinates Aw, Ax, Ay, Az:

Aw ≡ Tr[Â] Ax ≡ Tr[Âσ̂x] Ay ≡ Tr[Âσ̂y] Az ≡ Tr[Âσ̂z]

Any qubit observable is uniquely specified by these four numbers. The inverse map from

Pauli coordinates to matrices is:

Â =
1

2

Aw +Az Ax − ıAy

Ax + ıAy Aw −Az

 =
1

2

(
Aw1̂ +Axσ̂x +Ayσ̂y +Azσ̂z

)

Note that any self-adjoint 2×2 complex matrix can be written in this form.

The set of all qubit observables forms a real vector space with dimension 4. The set

{1̂, σ̂x, σ̂y, σ̂z} is a basis, and Aw, Ax, Ay, Az are the components of Â with respect to that

basis.4 The Hilbert-Schmidt inner product of two matrices Â, B̂ is Tr[Â†B̂]. With this

definition, qubit observables are an inner product space and {1̂, σ̂x, σ̂y, σ̂z} is an orthonormal

basis (except for an annoying factor of 2):5

Tr[1̂2] = 2 Tr[1̂σ̂x] = Tr[1̂σ̂y] = Tr[1̂σ̂z] = 0 Tr[σ̂iσ̂j ] = 2δij

4The set {1̂, ıσ̂x, ıσ̂y, ıσ̂z} is a basis for the quaternion algebra H. Pauli coordinates are not quaternions,
though quaternions do provide another formalism for qubit calculations.

5Many annoying factors of 2 can be removed by using a rescaled inner product Tr[Â†B̂]/2. But then pure
states have |r| = 1/2, which conflicts with the usual Bloch-sphere conventions.
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For some calculations, it is also convenient to define a real 3D vector A:

A ≡
(
Ax, Ay, Az

)
=
(

Tr[Âσ̂x],Tr[Âσ̂y],Tr[Âσ̂z]
)

|A| ≡
√
A2
x +A2

y +A2
z

The trace, determinant, and eigenvalues of any qubit observable Â are:

Tr[Â] = Aw Det[Â] =
1

4

(
A2
w − |A|2

)
A± =

1

2

(
Aw ± |A|

)
Density matrices are observables with two extra rules: eigenvalues are non-negative and

sum to 1.[2] For any qubit density matrix ρ̂, define a Bloch vector r ∈ R3:

r ≡
(
x, y, z

)
≡
(

Tr[ρ̂σ̂x],Tr[ρ̂σ̂y],Tr[ρ̂σ̂z]
)

The rule Tr[ρ̂] = 1 ensures that only three Pauli coordinates (x, y, z) are needed to uniquely

specify ρ̂. The inverse map from Bloch vectors to density matrices is:

ρ̂ =
1

2

 1 + z x− ıy

x+ ıy 1− z

 =
1

2

(
1̂ + xσ̂x + yσ̂y + zσ̂z

)

Spherical coordinates of r are equivalent to Bloch-sphere coordinates (θ, φ). To prove this

is true, write |Ψ〉 as a column vector and write α, β in terms of θ, φ:

|Ψ〉 =

α
β

 =

 cos(1
2θ)

eıφ sin(1
2θ)


Pauli coordinates (x, y, z) are the expectation values of Pauli matrices σ̂x, σ̂y, σ̂z.

x = 〈Ψ|σ̂x|Ψ〉 =

[
α∗ β∗

]0 1

1 0


α
β

 =
(
eıφ + e−ıφ

)
cos(1

2θ) sin(1
2θ)

y = 〈Ψ|σ̂y|Ψ〉 =

[
α∗ β∗

]0 −ı

ı 0


α
β

 = ı
(
e−ıφ − e−ıφ

)
cos(1

2θ) sin(1
2θ)

z = 〈Ψ|σ̂z|Ψ〉 =

[
α∗ β∗

]1 0

0 −1


α
β

 = cos2(1
2θ)− sin2(1

2θ)
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These can be simplified with the help of some trigonometric identities:

eıφ + e−ıφ = 2 cos(φ) cos2(1
2θ)− sin2(1

2θ) = cos(θ)

eıφ − e−ıφ = 2ı sin(φ) cos(1
2θ) sin(1

2θ) = 1
2 sin(θ)

In terms of θ and φ, the Pauli coordinates of any qubit pure state are:

x = (sin θ)(cosφ) y = (sin θ)(sinφ) z = cos θ

The inverse map from Bloch-sphere to Pauli coordinates is:

θ = arccos (z) ∈ [0, π] φ = arctan
(y
x

)
∈ [0, 2π)

The following are thus equally-valid ways to represent a qubit pure state:

State vector: a vector |Ψ〉 ∈ C2 with the usual normalization and phase-factor rules.

Density matrix: a rank-1 projection operator ρ̂Ψ ≡ |Ψ〉〈Ψ|.

Bloch coordinates: two angles θ ∈ [0, π] and φ ∈ [0, 2π).

Pauli coordinates: a vector (x, y, z) ∈ R3 with x2 + y2 + z2 = 1.

For reference, Table 1.3 shows pure-state change-of-coordinate formulas.

Table 1.3: Coordinate transformation formulas for qubit pure states.

α|0〉+ β|1〉 (θ, φ) (x, y, z)

α = cos(1
2θ) [1

2(1 + z)]1/2

β = eıφ sin(1
2θ) [1

2(1− z)]1/2 eı arctan(y/x)

θ = 2 arccos(||α||) arccos(z)

φ = Phase(β) - Phase(α) arctan(y/x)

x = 2Re[α∗β] (sin θ)(cosφ)

y = 2Im[α∗β] (sin θ)(sinφ)

z = 2||α||2 − 1 cos θ

Pauli and Bloch coordinates can be extended to include mixed states as well. Suppose an un-

known pure state might be one of several possible states {|Ψ1〉, . . . , |ΨK〉} with probabilities

{p1, . . . , pK}. In Pauli coordinates, von Neumann’s definition of mixed state becomes:

ρ̄ =

K∑
k=1

pk|Ψk〉〈Ψk| =
K∑
k=1

pkρ̂Ψk =
1

2

K∑
k=1

pk
(
1̂ + xkσ̂x + ykσ̂y + zkσ̂z

)
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Define x̄ ≡
∑
pkxk to be the expected value of x, and define ȳ, z̄ similarly. Then

ρ̄ =
1

2

(
1̂ + x̄σ̂x + ȳσ̂y + z̄σ̂z

)
Orthogonality of {1̂, σ̂x, σ̂y, σ̂z} implies that the Bloch vector of the mixed state ρ̄ is

r̄ =
K∑
k=1

pkrk = (x̄, ȳ, z̄)

Bloch vectors of mixed states are thus convex combinations of pure-state Bloch vectors.

The convex hull of a set S ⊂ RN is the set of all convex combinations of vectors in S.

Define the Bloch ball as the convex hull of the Bloch sphere. Points in the Bloch ball can

be represented equally well by Pauli coordinates (x, y, z) with x2 + y2 + z2 ≤ 1 or Bloch

coordinates (r, θ, φ) with r ≡ |r|. The eigenvalues of any qubit density matrix ρ̂ are:

λ± =
1

2

(
1± |r|

)
Eigenvalues of ρ̂ must be non-negative, so 0 ≤ |r| ≤ 1. Pure density matrices are rank-1

projections with eigenvalues 1 and 0, which requires |r| = 1. In other words,

Pure states are on the Bloch sphere. Mixed states are inside the Bloch sphere.

If two state vectors are orthogonal, then their Bloch vectors point in opposite (not per-

pendicular!) directions. This apparent contradiction is resolved by distinguishing between

different inner products on different spaces. The inner product r1 ·r2 of two Bloch vectors is

the usual dot product on R3. The inner product 〈Ψ1|Ψ2〉 of two state vectors is the complex

Euclidean inner product on C2. The Hilbert-Schmidt inner product of two matrices Â, B̂ is

Tr[Â†B̂]. These inner products are related like so:

|〈Ψ1|Ψ2〉|2 = Tr[ρ̂1ρ̂2] =
1

2

(
1 + r1 · r2

)
For mixed states, 〈Ψ1|Ψ2〉 is not defined, but the relation Tr[ρ̂1ρ̂2] = 1

2(1 + r1 · r2) remains

valid. The Bloch angle between two states is the smallest positive Φ such that

cos(Φ) =
r1 · r2

|r1||r2|
=

2Tr[ρ̂1ρ̂2]− 1√
(2Tr[ρ̂2

1]− 1)(2Tr[ρ̂2
2]− 1)

(Pure or mixed states)

cos(Φ) = r1 · r2 = 2Tr[ρ̂1ρ̂2]− 1 = 2|〈Ψ1|Ψ2〉|2 − 1 (Pure states only!)

Bloch angles define a metric for pure states: the shortest distance between two points on

the Bloch sphere is Φ(r1, r2) = arccos(r1 · r2) ∈ [0, π]. Bloch angles must not be confused
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with the quantum angle Γ ∈ [0, π2 ] between two state vectors:6

cos(Γ) = |〈Ψ2|Ψ1〉| =
√

Tr[ρ̂2ρ̂1] =
√

1
2(1 + r1 · r2)

For pure states, the Bloch angle Φ is twice the quantum angle Γ. If two state vectors are

orthogonal in C2, then their quantum angle is Γ = π
2 and their Bloch angle is Φ = π.

cos(2Γ) = 2 cos2(Γ)− 1 = r1 · r2 = cos(Φ)

If one attempts to use this formula to define a quantum angle Γ between two mixed states,

then the relation Φ = 2Γ is no longer valid. The Bloch angle Φ(r1, r2) is a valid metric for

any two states with equal magnitudes |r1| = |r2|. The quantum angle Γ(r1, r2) is not. (For

example, the quantum angle between r = (0, 0, 1
2) and itself is nonzero.)

The expectation value 〈A〉 of an observable Â is the inner product Tr[Âρ̂]. Using orthogo-

nality of {1̂, σ̂x, σ̂y, σ̂z}, the equivalent statement for Pauli coordinates is:

〈A〉 ≡ Tr[Âρ̂] =
1

4
Tr
[ (
Aw1̂ +Axσ̂x +Ayσ̂y +Azσ̂z

) (
1̂ + xσ̂x + yσ̂y + zσ̂z

) ]
=

1

2

(
Aw + xAx + yAy + zAz

)
=

1

2

(
Aw + A · r

)
Measurement of any qubit observable Â has only two possible outcomes: the eigenvalues of

Â, which are A± = 1
2(Aw ± |A|). Call the greater eigenvalue A+ the “A up” result. If a

qubit state is the “A up” eigenstate, then measurement is certain to return the result A+.

In this case 〈A〉 = A+, which is true if and only if

1
2(Aw + A · r) = 1

2(Aw + |A|) ⇔ r =
A

|A|

In Pauli coordinates, the “A up” eigenstate is represented by a unit vector pointing in the

A direction. A similar calculation shows that the “A down” eigenstate is represented by a

unit vector pointing the opposite direction.

Measurement probabilities are found by projecting A onto r. Let |A±〉 be normalized eigen-

vectors of Â with eigenvalues A±. Given a pure state |Ψ〉, these outcomes have probabilities

P (A±) = |〈A±|Ψ〉|2 = cos2(Γ), where Γ is the quantum angle between |A±〉 and |Ψ〉.

P (A±) = cos2
[
Γ(A±, r)

]
= cos2

[
1
2Φ(A±, r)

]
=

1

2

[
1 + cos(Φ[A±, r])

]
=

1

2

(
1 + r ·A±

)
Note that Aw = Tr[Â] does not appear in this formula. Changing the trace of an observable

affects the value of its possible results, but not their probabilities. Many calculations can

6The quantum angle is also known as the Fubini-Study metric on projective 2D complex space P(C2).
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be simplified by defining the traceless friend of a qubit observable Â:

Â′ ≡ Â− 1
2Aw1̂

The trace of Â′ is Tr[Â] − 1
2AwTr[1̂] = 0. An observable and its traceless friend share the

same eigenvectors with all eigenvalues shifted by the same additive constant 1
2Aw.

The commutator of any two matrices Â, B̂ equals the commutator of their traceless friends,

which is especially useful for solving the Liouville-von Neumann equation.

[
Â′, B̂′

]
=
[
Â, B̂

]
− 1

2Aw
[
1̂, B̂

]
− 1

2Bw
[
Â, 1̂

]
+ 1

4AwBw
[
1̂, 1̂
]

=
[
Â, B̂

]

1.3 Time evolution and spin-1
2 parameters

Let Ĥ be a qubit’s (possibly time-dependent) Hamiltonian operator, and assume that time

evolution of the qubit’s state vector obeys the Schrödinger equation:7

ı~
d

dt
|Ψ〉 = Ĥ|Ψ〉

The equivalent statement for density matrices is the Liouville-von Neumann (LvN) equation:[1]

ı~
d

dt
ρ̂ =

[
Ĥ, ρ̂]

Let Hw, Hx, Hy, Hz be the Pauli coordinates of Ĥ. The LvN equation is:

ı~
2

d

dt

(
1̂ + xσ̂x + yσ̂y + zσ̂z

)
=

1

4

[(
Hxσ̂x +Hyσ̂y +Hzσ̂z

)
,
(
xσ̂x + yσ̂y + zσ̂z

)]
Using bilinearity of the commutator operation, the right-hand side is:

1

4

(
Hxy[σ̂x, σ̂y] +Hxz[σ̂x, σ̂z] +Hyx[σ̂y, σ̂z] +Hyz[σ̂y, σ̂z] +Hzx[σ̂z, σ̂x] +Hzy[σ̂z, σ̂y]

)
Every matrix commutes with 1̂, so the coordinate Hw = Tr[Ĥ] does not appear in the LvN

equation. Replacing Ĥ with its traceless friend Ĥ − 1
2Tr[Ĥ] does not alter time evolution.

In physical terms, changing Tr[Ĥ] only shifts the potential energy of the qubit by an arbi-

trary additive constant. In mathematical terms, changing Tr[Ĥ] changes solutions of the

Schrödinger equation only by multiplying |Ψ(t)〉 by a meangingless phase factor.

7Or at least, it does when nobody is observing the qubit. Drunk models do not attempt to predict or
explain evolution of a state during or after measurement.
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The Pauli matrix commutators are:

[σ̂x, σ̂y] = 2ıσ̂z [σ̂y, σ̂z] = 2ıσ̂x [σ̂z, σ̂x] = 2ıσ̂y

The LvN equation then simplifies to:

~
d

dt

(
xσ̂x + yσ̂y + zσ̂z

)
= (zHy − yHz)σ̂x + (xHz − zHx)σ̂y + (yHx − xHy)σ̂z

d

dt

 z x− ıy

x+ ıy −z

 =
1

~

 yHx − xHy zHy − yHz − ı(xHz − zHx)

zHy − yHz + ı(xHz − zHx) −(yHx − xHy)


The LvN equation for Pauli coordinates can also be written without complex numbers:

d

dt


x

y

z

 =
1

~


0 −Hz Hy

Hz 0 −Hx

−Hy Hx 0



x

y

z


In terms of 3D rotation generators, the LvN equation is:

~ṙ =
[
HxÎ +HyĴ +HzK̂

]
r

Here ṙ is Newton’s dot notation for a time derivative. The 3D rotation generators are:

Î ≡


0 0 0

0 0 −1

0 1 0

 Ĵ ≡


0 0 1

0 0 0

−1 0 0

 K̂ ≡


0 −1 0

1 0 0

0 0 0


Note that these are not quaternions, though quaternions can also be used to represent 3D

rotations. The Î , Ĵ , K̂ matrices are closely related to the cross product:

H× r =
[
HxÎ +HyĴ +HzK̂

]
r

A similar calculation shows that, for any qubit observables Â and B̂, the observable Ĉ =

−ı[Â, B̂] is traceless with Pauli coordinates C = A×B.8

8Hamilton would almost surely recognize this result as right quaternion multiplication. Group theorists
may recognize it as a Lie algebra isomorphism su(2) ∼= so(3). Annoying factors of 2 appear because SU(2)
is a double cover of SO(3). The time-evolution equation resembles quaternion multiplication because unit
quaternions form the Spin group Sp(1) ∼= SU(2).
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Using the cross product, the LvN equation can be written in an extremely compact form:

~ṙ = H× r (LvN)

Equation (LvN) provides a geometric picture of qubit evolution: Bloch vectors rotate about

the axis H with angular velocity ω = |H|/~. Because r · ṙ = r · (H × r) = 0, the radial

velocity of r is always zero and states are constrained to a sphere with radius |r(0)|.

If H is constant in time, then the solution to (LvN) is a matrix exponential:

r(t) = exp
[

1
~
(
HxÎ +HyĴ +HzK̂

)
t
]

r(0)

Rodrigues’ rotation formula gives an explicit solution if H is constant:[4]

r(t) = cos(ωt)r(0) +
sin(ωt)

[
H× r(0)

]
~ω

+

[
1− cos(ωt)

][
H · r(0)

]
H

~2ω2
ω ≡ |H|

~

If H is not constant, then solutions can be approximated using Magnus, Fer, or Dyson

series. (Chapter 5 explains a simple Magnus-based numerical method.)

To standardize notation, it is often convenient to refer to a qubit as if it were a spin-1
2

particle in a magnetic field B. The Hamiltonian for such a system is:

Ĥ = −γ ~
2

(
Bxσ̂x +Byσ̂y +Bzσ̂z

)
where γ is the particle’s gyromagnetic ratio. Pauli coordinates of Ĥ are:

H =
(
Hx, Hy, Hz

)
=
(
Tr[Ĥσ̂x],Tr[Ĥσ̂y],Tr[Ĥσ̂z]

)
= −γ~

(
Bx, By, Bz

)
= −γ~B

The LvN equation is then identical in form to the relaxation-free Bloch equation.9

~ṙ = −γ~B× r ⇔ ṙ = γ(r×B)

To map any physical qubit to a fictional spin-1
2 system, do the following:

1. Name the states |0〉, |1〉 “z-up” and “z-down.” (z-up is the lower -energy eigenstate.)

2. Define fictional spin observables {Ŝx, Ŝy, Ŝz} which are 1
2~ times the Pauli matrices.

3. Define a vector H = (Tr[Ĥσ̂x],Tr[Ĥσ̂y],Tr[Ĥσ̂z]). Define B = −H and γ = 1/~.

This fictional spin provides standardized parameters for different qubit designs.

9The LvN and relaxation-free Bloch equations are mathematically equivalent but physically distinct. The
LvN equation describes a single qubit. The Bloch equation describes macroscopic nuclear magnetization.
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1.4 Generic qubit units: angels, blinks, and rads

Qubit designs vary widely: ion traps, optical coherent states, and Josephson junctions are

just a few examples.[5][6][7] For a spin-1
2 particle, angular momentum is a natural choice for

basis observables {Ŝx, Ŝy, Ŝz}. For a charge qubit, Coulombs might more relevant; for an

optical qubit, relevant units might be dimensionless photon number or polarization.

Bloch angles and Pauli coordinates are dimensionless. Phrases such as “π pulse” and “90◦

rotation” can be interpreted geometrically without reference to the physical design of a

particular qubit. But eigenvalues of Ĥ are necessarily energies, and the relevant time scales

for different qubits can differ by many orders of magnitude. Generic time and energy units

can be useful for numerical simulations and comparison of different qubit designs.

For any particular physical qubit, choose some constant reference Hamiltonian Ĥ0. Think

of this as “Ĥ with all knobs at zero,” i.e. all parameters set to their default values. Let

E0, E1 denote the energies of states |0〉 and |1〉, and define the energy gap ε ≡ E1 − E0.

The traceless friend of the reference Hamiltonian Ĥ0 is then:

Ĥ ′0 = −1

2
εσ̂z =

1

2

−ε 0

0 ε


Pauli coordinates of Ĥ0 are H0 = (0, 0,−ε). Define the natural angular frequency of

the qubit to be ω0 ≡ ε/~. The LvN equation and its solution are:

ṙ = − ε
~
(
z× r

)
= −ω0

(
z× r

)

x(t)

y(t)

z(t)

 =


cos(ω0t) sin(ω0t) 0

− sin(ω0t) cos(ω0t) 0

0 0 1



x(0)

y(0)

z(0)


Define new energy and time units such that ε, ω0, and ~ can be replaced by 1:

1 angel ≡ ε = E1 − E0 1 blink ≡ 1

ω0
=

~
E1 − E0

Viewed from above the north pole, the qubit’s Bloch vector r rotates clockwise about the

z-axis. A blink is the unit of time needed for r to rotate 1 radian. The energy unit angel is

a mnemonic pun on angular velocity.10 In these units, ~ = 1 angel · blink.

10Fans of British science fiction may also recognize an angel as a creature which feeds on potential energy.
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Table 1.4 shows order-of-magnitude estimates of timescales for a few qubit designs. (In prac-

tice, the time needed to perform a gate operation may be more important than ω0.)

Table 1.4: Rough estimates of natural angular frequency and coherence times.

qubit type ω0 (rad/sec) T1, T2 (sec) T1, T2 (blinks)

superconducting fluxonium [8] 109 10−6 103

superconducting transmon [8] 109 10−4 105

atomic dipole trap [9] 109 10−3 106

diamond nuclear spin [10] 104 1 104

Dimensionless energy and time units can also be generalized to higher-dimensional systems.

Let Emax, Emin be the maximum and minimum eigenvalues of Ĥ over a given time interval.

Define 1 angel to be a unit of energy equal to the largest energy gap ε ≡ Emax −Emin, and

define 1 blink to be ~/ε. These generic units can be useful for numerical simulations. For

any Hamiltonian Ĥ, define a positive-semidefinite Ĥ+ ≡ Ĥ−Emin1̂. The largest eigenvalue

of Ĥ+ during the time interval is then 1 angel, and the fastest angular frequency generated

by exp[−ı~ Ĥ+] is 1 rad/blink. The Nyquist rate for this frequency is:

2 samples

cycle
· cycle

2π rad
· 1 rad

blink
=

1 sample

π blinks

If the sample rate of a simulation is faster than 1 sample per π blinks, then it is protected

from Nyquist aliasing. Blinks can also be interpreted in terms of Taylor-series convergence.

If Ĥ is constant in time, then time evolution can be found by a matrix exponential which

is defined by a Taylor series:

|Ψ(t)〉 = exp
[
− ı

~Ĥt
]
|Ψ(0)〉 exp

[
− ı

~Ĥt
]

=
∞∑
m=0

1

m!

(
− ı

~
Ĥt
)m

Replace Ĥ with Ĥ+ ≡ Ĥ − Emin1̂ as before. The spectral norm ||M̂ || of a matrix is the

magnitude of its largest eigenvalue, so ||Ĥ+|| = Emax −Emin = 1 angel. The spectral norm

is submultiplicative: ||M̂m|| ≤ ||M̂ ||m. Thus if t ≤ 1 blink, then each Taylor term has

smaller spectral norm than the previous term.

A similar result holds for Magnus series solutions to the LvN equation, which are explained

in Chapter 5. A sufficient condition for Magnus-series convergence is:

π >

∫ t1

t0

||Ĥ(t)|| dt

The Nyquist condition of > 1 sample per π blinks thus guarantees convergence.
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2 DRUNK MODELS

Von Neumann used density matrices to represent systems for which “we do not even know

what state is actually present.”[1] Drunk models represent experiments for which we do not

even know what Hamiltonian operator is actually present during a system’s evolution. An

unknown state is represented by a pure-density-matrix-valued stochastic process ρ̂t. The

mean state ρ̄(t) ≡ E[ρ̂t] is the expectation value of that process at time t.1 In addition to

Copenhagen quantum mechanics, drunk models assume the principle of finite precision:

Absolutely precise control of an experiment is impossible.

In principle, the best possible representation of a system is assumed to be some pure state

ρ̂t and deterministic Hamiltonian Ĥt. Time evolution of an unobserved system is assumed

to obey the Liouville-von Neumann equation exactly. In practice, uncontrolled interactions

alter the precise value of Ĥt, thus altering future values of ρ̂t. Given imperfect knowledge

of ρ̂t and Ĥt, a scientist cannot precisely predict future states. Instead, he or she can assign

probabilities to possible states and Hamiltonians, calculate a mean state, and use that mean

state to predict measurement probabilities. Any experiment involving repeated trials then

becomes a de facto Monte Carlo simulation.

The measurement problem prevents experimenters from uniquely determining the state of a

system by performing a single experimental trial.2 State tomography provides an alternative

method: perform many measurements of each basis observable, record the results, and infer

expectation values from the recorded data. To avoid endless statistical paradoxes, it is

helpful to draw sharp distinctions between true states of physical systems, mean states

of theoretical models, and estimated states inferred from experimental data. In an ideal

experiment, these three quantities converge. In an imperfect experiment, they do not.

Drunk models are not intended to explain wavefunction collapse, nor to resolve the mea-

surement problem. No attempt is made to answer the question, “What happens to a system

after a measurement has been made?” The goal is more modest: to show that evolution by

random unitary transformations can appear to produce von Neumann entropy.

1The bar notation ρ̄ is a mnemonic to suggest that ρ̄(t) is an average of possible pure states.
2Unorthodox interpretations of quantum mechanics may disagree. Also, weak measurements and non-

demolition measurements are ignored in this thesis for the sake of simplicity. Readers who wish to remedy
this omission are encouraged to cite-search [11] and the resulting discussions and controversies.
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2.1 Pathwise construction of a drunk qubit

Pauli or Bloch coordinates from Chapter 1 allow any qubit density matrix to be represented

by a real vector r ∈ R3 with 0 ≤ |r| ≤ 1. The trace of a qubit’s Hamiltonian Ĥ does not affect

time evolution, and its traceless friend Ĥ − 1
2Tr[Ĥ] can be represented by a vector H ∈ R3.

To ensure compatibility with experimental conventions and for ease of visualization, these

vectors are often used instead of 2×2 complex matrices throughout this thesis. (Appendix

B considers generalizations to N -level systems.)

Define a sober qubit as an initial pure state r0 with |r0| = 1 and a Hamiltonian H which

is a deterministic function of time. A drunk qubit is an initial pure-state-valued random

variable r0 and a Hamiltonian H which is a stochastic process. (The mathematical formal-

ism of stochastic processes is introduced in Appendix A and its cited references.)

The pathwise construction of a drunk qubit is the following algorithm:

1. Define a stochastic process H such that each sample path of H represents a possible

Hamiltonian which might occur on an experimental trial.

2. For each possible Hamiltonian Hk, define a possible state rkt as the corresponding

solution to the Liouville-von Neumann equation at time t, given initial condition r0.

(The superscript k is an index, not an exponent.)

3. Let pk denote the probability that sample path Hk occurs on a trial. For any t ≥ 0,

define a random variable rt by assigning probability pk to the kth possible state rkt .

Call this random variable rt the true state.

4. Define the mean state r̄(t) to be the expectation value E[rt] over all possible states.

If countably-many possible states {rkt } are assigned probabilities {pk}, then the mean state

r̄(t) is constructed exactly as in von Neumann’s definition:

r̄(t) ≡ E[rt] =
∑
k

pkr
k
t

For some of the random models in Chapter 3 and all of the stochastic models in Chapter 4,

H has uncountably-many sample paths and this pathwise construction becomes inadequate.

It is presented here to suggest a physical interpretation: the true state of the system during

an experimental trial is some pure-but-unknown rt. Any one of the possible states {rkt }
might be the true state on a given trial. The mean state r̄(t) = E[rt] is an average of

possible states weighted by their probabilities. The last piece of the puzzle is the estimated

state R(t), which is often what is depicted in the plots of an experimental research paper.

For reference, Table 2.1 summarizes the distinctions.
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Table 2.1: Naming conventions for true, sample, mean, and estimated states

Name Notation What is it?

True state rt Random variable representing the qubit’s unknown state

Possible state rkt Possible solution to the LvN equation

Mean state r̄(t) Expected value E[rt] calculated from a drunk model

Estimated state R(t) Statistical estimator inferred from experimental data

2.2 State tomography and statistical inference

Suppose a scientist wishes to experimentally determine the Pauli coordinates of a qubit.

Suppose this scientist measures the observable σ̂x and the result is +1. According to

orthodox quantum mechanics, the qubit’s state is now r = (1, 0, 0). As for what the state

was before measurement, all that can be said with certainty is x 6= −1.

State tomography is a method for experimentally inferring the state of a system by

preparing many identical copies of the system (or by repeatedly evolving the same system

under identical conditions) and measuring basis observables – in this case, Pauli matrices.3

The following procedure can be used to infer the state’s Pauli coordinate x:

1. Prepare the qubit in some state r. Measure σ̂x and record the result.

2. Repeat Step 1 many times using identical preparation procedures for each trial.

3. Find the mean value of the results. Call that number the sample mean X.

If this algorithm is repeated for σ̂y and σ̂z, then the resulting data can be used to infer the

system’s pre-measurement state ex post facto. If X,Y, Z are the sample means of σ̂x, σ̂y, σ̂z,

then define the estimated state like so:

R ≡ (X,Y, Z)

Time evolution can be inferred by repeated state tomography. An experimenter chooses

J sample times {t1, . . . , tJ} and prepares the qubit in some initial state r0. The qubit is

evolved for t1 seconds, then σ̂x is measured. Many such trials are repeated for each Pauli

matrix. The entire state tomography procedure is then repeated with the qubit evolved for

t2 seconds on each trial, and so on until J estimated states {R(tj)} have been calculated.

Figure 2.1 shows numerical simulations of a state tomography experiment with finitely many

identical, independent measurements of σ̂x, σ̂y, and σ̂z.

3Any three Hilbert-Schmidt-orthogonal observables can be used instead of Pauli matrices. N -level basis
observables are explained in Appendix B. Non-orthogonal basis observables can also be used; see [12].
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Figure 2.1: Fluctuations of estimated state R(t) for an ideal qubit with B = (0, 0, 1).

Initial state is r0 = (1, 1, 1)/
√

3. Solid lines are values of x(t), y(t), z(t) calculated from the
LvN equation. Points are sample means X(tj), Y (tj), Z(tj) at 200 sample times {tj}.
Top: 100 trials per data point. Bottom: 1000 trials per data point.

The name estimated state is meant to emphasize that R is not a physical state; it is a

statistical estimator of a physical state. (More precisely, it is a maximum-likelihood estima-

tor.) The distinctions between true, mean, and estimated states may seem unnecessarily

complicated, but these three vectors are not subject to the same constraints! True states

are assumed to be pure, which constrains r to the unit sphere |r| = 1. Mean states are

convex combinations of true states, which constrains r̄ to the unit ball |̄r| ≤ 1. Estimated

states are constrained to a cube R ∈ [−1, 1]× [−1, 1]× [−1, 1].

As an extreme example, suppose each Pauli observable is measured only once. Then each

of the sample means X,Y, Z is certain to be either 1 or -1, and the estimated state R has

square magnitude |R|2 = 3. As a more realistic example, assume the true state is the ground

state r = (0, 0, 1) and each observable is measured 5000 times. All σ̂z results are certain to
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be 1, so Z = 1. The probability that all σ̂x measurements yield the result +1 is 0.55000.

The probability that |X| = 1 is then 0.54999, as is the probability that |Y | = 1. So the

probability that an estimated state has square magnitude |R|2 = 3 is 0.59998 ≈ 2 · 10−3010.

Estimated states this far “outside the ball” are wildly improbable, but not impossible.

The inference r ≈ R is justified by Borel’s version of the Law of Large Numbers (LLN):

If an experiment is repeated a large number of times, independently under iden-

tical conditions, then the proportion of times that any specified event occurs

approximately equals the probability of the event’s occurrence on any partic-

ular trial. The larger the number of repetitions, the better the approximation

tends to be.[13]

If r is indeed the true state of the system on each trial, then the mean value R of infinitely

many independent, identical trials equals its expectation value r. But there are at least

three dangerous words in the preceding sentence: independent, infinite, and identical.

Independence of measurement probabilities follows from a strict reading of the Born rule.

If r is the qubit’s state, then the probability that a σ̂x measurement returns the result +1

is completely determined by projecting r onto the “x-up” eigenstate X+:

P (X+|r) ≡ P
(
σ̂x is measured “up”|r

)
= 1

2

(
1 + r ·X+

)
= 1

2

(
1 + x

)
P (X−|r) ≡ P

(
σ̂x is measured “down”|r

)
= 1

2

(
1 + r ·X−

)
= 1

2

(
1− x

)
If the Born rule and Copenhagen quantum theory are correct, then the numbers P (X±|r) are

independent of whatever other procedures scientists might perform. Drunk models blame

fluctuation and dissipation of R on failure of the infinite and identical assumptions.

2.3 Fluctuations and dissipation

The LvN equation predicts deterministic, well-behaved solutions for rt. Actual experiments

produce erratic estimated states R(t) which do not exactly follow the LvN equation, even in

the unrealistic limit that the Hamiltonian is perfectly controlled and all trials are absolutely

identical. Small errors in R(t) are practically inevitable because no scientist has enough

graduate students to perform ∞ trials of an experiment.

Suppose a qubit is prepared in some true state r and a measurement of σ̂x is performed.

The expected value of the sample mean X after a single measurement of σ̂x is:

E[X|r] = P (X+|r)− P (X−|r) = 1
2(1 + x)− 1

2(1− x) = x
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The variance of X after a single trial is only zero if x = ±1:

E
[
(X − x)2

∣∣r] = E
[
X2
∣∣r]− x2 = 1− x2

Suppose K trials are performed and the true state is exactly identical on every trial. This

experiment is a sequence of K independent, identically-distributed (i.i.d.) Bernoulli trials

with outcomes ±1. An explicit formula for P (X|r) is rather awkward-looking, but a sensible

derivation can be found by considering the experminent as a sequence of biased coin tosses.

Call the measurement result +1 “heads” and the result -1 “tails.” The probability PK(h|r)

of h heads results after K Bernoulli trials is binomially-distributed:

P (h|r) =
K!

h!(K − h)!
P (X+|r)hP (X−|r)K−h =

K!

2Kh!(K − h)!
(1 + x)h(1− x)K−h

The sample mean X is (number of heads - number of tails) / (number of trials):

X =
h− (K − h)

K
=

2h

K
− 1 ⇔ h = 1

2K(1 +X)

The possible values of X are:

2h

K
− 1 h ∈ {0, 1, 2, . . . ,K}

The expectation value of h heads results is K times the probability of heads on a single

trial: E[h] = KP (X+|r) = 1
2K(1 + x). The variance of h is K times the probability of

heads times the probability of tails: σ2
h = KP (X+|r)P (X−|r) = 1

4K(1 − x2). Using the

relation X = 2h/K − 1, the expected value and variance of X are:

E[X] =
2E[h]

K
− 1 = x σ2

X =

(
2

K

)2

σ2
h =

1− x2

K

Figure 2.2 shows the probability mass function for X if σ̂x is measured for 100 identical

states with x = 0. If many trials are performed, the distribution can be approximated as a

normal distribution with mean x and variance (1− x2)/K.

Figure 2.2: Distribution of sample mean X after 100 measurements of a state with x = 0.
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After finitely-many trials, the observed value of R need not exactly equal its expected value.

Even if r is precisely identical on all K trials, fluctuations of order σX =
√

(1− x2)/K will

routinely be detected in the sample mean X, and similarly for Y and Z. Experimenters are

well aware of the obvious method for reducing fluctuations: do more trials.

The word identical is the remaining obstacle to safe use of the Law of Large Numbers.

Minimizing fluctuations requires many trials, so experimenters are faced with the challenge

of ensuring that many trials are very nearly identical. On any given trial, suppose the

qubit’s true state r might be one of K possible states {rk} with probabilities {pk}. The

probability of an “x-up” result is given by the total probability formula:

P (X+) =

K∑
k=1

P (X+|rk)P (rk) =

K∑
k=1

1

2

(
1 + rk ·X+

)
pk =

1

2

(
1 + r̄ ·X+

)

The term total probability refers to the Law of Total Probability. Suppose {D1, D2, . . .} is

a countable set of pairwise-disjoint events, and suppose
∑

k P (Dk) = 1. (Less formally:

exactly one, but never more than one, of the events {Dk} is certain to occur.) Suppose C

is an event in the same probability space. The discrete Law of Total Probability is:

P (C) =
∑
k

P (C|Dk)P (Dk)

In the context of drunk models, the meaning of this law can be clarified by distinguishing

between two different numbers which are both called “probabilities.”

0. P (X+|rk) is the probability of an x-up result, assuming that rk is the true state.

1. P (rk) = pk is the probability that rk is the true physical state of the qubit.

The conditional probability P (X+|rk) is determined by the Born rule, which drunk models

assume is a fundamental law of Nature. By contrast, the probability P (rk) is assigned by

a scientist in order to represent an imprecisely-known state. The latter probabilities are

properties of models, not properties of physical systems.

For the stochastic models in Chapter 4, the true state r has a continuous distribution. Let

p(r) be its probability density. The total probability formula remains valid:

P (X+) =

∫∫∫
P (X+|r)p(r) d3r =

∫∫∫
1

2

(
1 + r ·X+

)
p(r) d3r

=
1

2
+

1

2

(∫∫∫
rp(r) d3r

)
·X+ =

1

2

(
1 + r̄ ·X+

)
Confusion often arises when the term expectation value is used without specifying what

probability space the expectation is calculated over. Let E[X|rk] denote the conditional



35

expectation value of a single σ̂x measurement, given that rk is the true state of the system.

This expectation is a weighted average over both possible measurement results ±1. The

Born rule shows that E[X|rk] is just the x-coordinate of rk:

E[X|rk] = P (X+|rk)− P (X−|rk) =
1

2

(
1 + rk ·X+

)
− 1

2

(
1− rk ·X+

)
= rk ·X+

The total expectation value of a qubit measurement is an average over both possible

measurement results and all possible states:

E[X] ≡
∑
k

E[X|rk]P (rk) =
∑
k

(
rk ·X+

)
pk = r̄ ·X+ = x̄

The total expectation values of Y and Z are defined similarly. The components of the

estimated state R are the sample means X,Y, Z, so the total expectation of R is:

E[R] =
(
E[X], E[Y ], E[Z]

)
=
(
x̄, ȳ, z̄

)
= r̄

Drunk models do not assume the true state r is identical on all trials of an experiment. The

true state is represented by a random variable (or stochastic process) which is identically

distributed on all trials. Given this assumption, measurement probabilities are predicted

by the total probability formula, which itself is derived from the Born rule and whatever

probability distribution is assigned to r. In the limit that infinitely-many not-quite-identical

trials are performed, the estimated state R converges to the mean state r̄.

Dissipation is defined here as the tendency of estimated states R(t) to drift inward as t

increases. The Liouville-von Neumann equation does not permit true states to leave the

Bloch sphere. Mean states are not subject to the same constraint; the radius |̄r(t)| often

changes as t increases. Pauli and Bloch coordinates provide a geometric picture: possible

states stay on the surface of the Bloch sphere, but the average of all possible states wanders

around the interior of the Bloch ball. Section 2.4 shows that dissipation can be given a

Shannon-inspired interpretation as loss of information about a qubit’s true state.

2.4 Mixed states and missing information

Fano interpreted mixed states as “states of less than maximum information.”[2] Drunk mod-

els use a similar interpretation: a mean state is defined out of practical necessity whenever

a scientist is unable to precisely determine a system’s state vector. The phrase “less than

maximum information” is replaced here by “greater than zero von Neumann entropy.”
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The Shannon entropy of a discrete probability distribution {pk} is defined:[14]

S[{pk}] ≡ −
∑
k

pk log(pk) (S Entropy)

A simple mnemonic for (S Entropy) is to define the surprisal of an event to be log(1/p),

where p is the probability of that event occurring. Shannon entropy is then the “expected

surprisal”
∑
pk log(1/pk). The choice of logarithm base determines units: bit for base-

2, nat for base-e, and digit for base-10.4 These dimensionless units are not physical

measurements, but merely reminders of which logarithm was used to calculate S.

If one or more of the {pk} are zero, then the expressions− log(pk) and log(1/p) diverge. (One

would be infinitely surprised to observe an impossible event!) To avoid this dilemma, the

definition of Shannon entropy can be modified slightly by replacing the expression 0 log(0)

with limp→0+ p log(p) = 0 so that impossible events do not contribute to the sum.

According to Shannon, von Neumann was responsible for the name entropy :

My greatest concern was what to call it. I thought of calling it “information,”

but the word was overly used, so I decided to call it “uncertainty.” When I

discussed it with John von Neumann, he had a better idea. Von Neumann

told me, “You should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics under that name, so

it already has a name. In the second place, and more important, nobody knows

what entropy really is, so in a debate you will always have the advantage.”[15]

The word uncertainty, as used in quantum mechanics, also has a connection to Shannon en-

tropy. The Heisenberg uncertainty principle is well-known, but the entropic uncertainty

principle is a stronger statement! Suppose that Ψ(x) is a wavefunction and Ψ̃(k) its (uni-

tary) Fourier transform. Then |Ψ(x)|2 is a probability density for position and |Ψ̃(k)|2 is a

probability density for momentum. If these functions have well-defined Shannon entropies

S[|Ψ|2], S[|Ψ̃|2], then the sum of their entropies is bounded from below:

S[|Ψ|2] + S[|Ψ̃|2] ≥ log(πe)

This result was conjectured by Hirschman and Everett and later proved by Beckner.[16][17][18]

A proper discussion of continuous Shannon entropy and entropic uncertainty is outside the

bounds of this thesis; see [19] and its cited references for a survey of recent research.

4If surprisal of an event E is 4 Digits, then P [E ] = 10−4 and P [not E ] = 0.9999 has 4 significant digits.
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The von Neumann entropy of a density matrix ρ̄ is defined:[1]

S[ρ̄] ≡ −Tr
[
ρ̄ log(ρ̄)

]
(vN Entropy)

To see the relation beween (S Entropy) and (vN Entropy), recall that any self-adjoint matrix

ρ̄ can be diagonalized ρ̄ = ÛD̂Û−1 where Û is unitary and D̂ is diagonal and real. The

matrix logarithm of a non-negative self-adjoint matrix ρ̄ is:

log(ρ̄) ≡ Û log(D̂)Û−1

where log(D̂) is defined in the obvious way: replace the diagonal elements of D̂ with their

natural logarithms. (Matrix exponentials are covered in more detail in Chapter 5.) Then

log is the inverse function of the matrix exponential:

exp
[

log(ρ̄)
]

= exp
[
Û log(D̂)Û−1

]
= Û exp

[
log(D̂)]Û−1 = ÛD̂Û−1 = ρ̄

The von Neumann entropy of ρ̄ can also be written:

S[ρ̄] ≡ −Tr
[
ρ̄ log(ρ̄)

]
= −Tr

[
ÛD̂Û−1Û log(D̂)Û−1

]
= −Tr

[
ÛD̂ log(D̂)Û−1

]
The trace of a matrix is invariant under unitary transformations, so

S[ρ̄] = −Tr
[
D̂ log(D̂)

]
= −

N∑
n=1

λn log(λn)

where {λn} are the diagonal elements of D̂, which are necessarily the eigenvalues of ρ̄. The

eigenvalues {λn} of any density matrix are non-negative and sum to 1, so the set {λn} satis-

fies the axioms of a discrete probability distribution. A mnemonic for this result is: The von

Neumann entropy of a density matrix equals the Shannon entropy of its eigenvalues

Let {|ϕn〉} denote the eigenvectors of ρ̄ with eigenvalues {λn}. It is tempting, but mislead-

ing, to interpret each eigenvalue λn as “the probability the system is in state |ϕn〉〈ϕn|.”
The potential confusion is: spectral decomposition of ρ̄ is unique, but two distinct convex

combinations of pure states can result in the same ρ̄. For example, suppose a qubit state

might be either x-up or z-up, each with probability 1
2 . The mean state ρ̄ is:

ρ̄ = 1
2 |x↑〉〈x↑|+

1
2 |z↑〉〈z↑| =

1

4

1 1

1 1

+
1

2

1 0

0 0

 =
1

4

3 1

1 1

 =
1

2

(
1̂ + 1

2 σ̂x + 1
2 σ̂z

)
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The eigenvalues of ρ̄ are λ± = 1
2(1± 1√

2
). Its spectral decomposition is:

ρ̄ = λ+|ϕ+〉〈ϕ+|+ λ−|ϕ−〉〈ϕ−| =
1 + 1√

2

4

1 + 1√
2

1√
2

1√
2

1− 1√
2

+
1− 1√

2

4

1− 1√
2

−1√
2

−1√
2

1 + 1√
2


The calculation is easier in terms of Pauli coordinates. Eigenstates of r̄ are unit vectors in

the ±r̄ directions with eigenvalues λ± = 1
2(1 + |̄r|). The mean state is:

r̄ = 1
2

(
1, 0, 0

)
+ 1

2

(
0, 0, 1

)
= 1

2

(
1, 0, 1

)
Its eigenstates r± and eigenvalues λ± are:

r± = ± 1√
2
(1, 0, 1) λ± = 1

2

(
1± 1√

2

)
The qubit’s state was assumed to be either (1, 0, 0) or (0, 0, 1), so it is misleading to say “the

qubit state is r+ or r− with probabilities λ±.” A more accurate statement would be:

Suppose the system’s state is a random variable with outcomes {ρ̂k} and prob-

abilities {pk}. The mean state is ρ̄ =
∑
pkρ̂k. Let |λk〉 be eigenvectors of ρ̄ with

eigenvalues λk. If we pretend that {|λk〉〈λk|} are the only possible states, with

probabilities λ±, then we find the same value for ρ̄.

This unwieldy statement is probably not worth memorizing. The point is: many different

probability distributions for ρ̂ can correspond to the same mixed state ρ̄.

In terms of Pauli coordinates, the eigenvalues of a qubit mixed state r̄ are 1
2(1± |̄r|). The

von Neumann entropy of that mixed state is then:

S(r̄) = −1 + |̄r|
2

log

(
1 + |̄r|

2

)
− 1− |̄r|

2
log

(
1− |̄r|

2

)
= log(2)− 1

2

[
(1 + |̄r|) log(1 + |̄r|) + (1− |̄r|) log(1− |̄r|)

]
Note that S(r̄) is a function of |̄r| only, and S → 0 only in the limit |̄r| → 1. This is the

precise meaning of “pure states are on the Bloch sphere and mixed states are in the Bloch

ball.” The center r̄ = 0 is the maximum-entropy mixed state with S(r̄) = log(2).

Shannon interpreted his formula as a measure of “missing information” in a random variable.[14]

Von Neumann entropy of a mean state has a similar interpretation as the “minimum igno-

rance” for a measurement. If the mean state is r̄ and an observable A is measured, then

the total probability of the “heads” result is:

P (A+) = 1
2

(
1 + r̄ ·A+

)
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To a probabilist, any qubit measurement is a coin toss: a random variable with two outcomes

arbitrarily named “heads” and “tails.” The Shannon entropy of this coin toss is:

I(A, r̄) = −P (A+ |̄r) log[P (A+ |̄r)]− P (A− |̄r) log[P (A− |̄r)]

Note that I(A, r̄) is used here to denote Shannon entropy of a single measurement to avoid

confusion with S(r̄), the von Neumann entropy of a mean state.

If |̄r| = 1 and Â is an observable whose Bloch vector points in the same direction as r̄, then

measurement of Â is certain to return the value 1
2(Aw + |A|). But if |̄r| < 1, then there is

no observable whose result is certain. A+ is a unit vector by definition (see Section 1.2),

so the dot product r̄ ·A+ is necessarily between −|̄r| and |̄r|. If r̄ is “inside the ball,” then

the total probability formula must be less than 1 no matter how A is chosen.

For example, let r̄ = (r, 0, 0) for some r < 1. Then the result of a σ̂x measurement is 1 with

probability 1
2(1 + r), and the measurement entropy is

I(A, r̄) = −1 + r

2
log

(
1 + r

2

)
− 1− r

2
log

(
1− r

2

)
= S(r̄)

For qubits, von Neumann entropy is a lower bound on the Shannon entropy of a single

measurement.5 More precisely, I(A, r̄) ≥ S(r̄) with equality only when A and r̄ point the

same or opposite directions. For the maximum-entropy mixed state |̄r| = 0, the lower bound

for measurement entropy of any observable is S(r̄) = log(2) = 1 bit, and all measurements

become fair coin tosses. To paraphrase von Neumann, the statement r̄ = 0 is equivalent to

saying “we have absolutely no idea what state is actually present.”

Note that the LvN equation conserves |̄r| and thus cannot alter S(r̄). Even in higher dimen-

sions, the LvN equation evolves density matrices by unitary transformations which cannot

change eigenvalues of ρ̂ and thus cannot alter von Neumann entropy. Zurek summarized

this result concisely: “Unitary evolution condemns states to purity.”[20]

For all the models in this thesis, possible states are assumed to obey the LvN equation.

What gains entropy are the mean state of a model and the estimated state inferred from

an experiment. If true, mean, and estimated states are accidentally confused with each

other, then qubits appear to decohere irreversibly. Drunk models tell a different story: true

states evolve reversibly, and scientists simply lose track of them. The thought experiments

in Chapter 3 are meant to suggest that any information “missing” from a mean state should

be considered encrypted rather than destroyed.

5Caution is required when generalizing this result to higher-dimensional systems. For example, consider
orbital angular momentum eigenstates {|l,m〉}. The mixture ρ̂ = 1

3
|1, 1〉〈1, 1|+ 1

3
|1, 0〉〈1, 0|+ 1

3
|1,−1〉〈1,−1|

has S[ρ̂] = log(3). Measurement of any component of L is equally likely to produce ~, 0, or −~, but the result
of measuring L̂2 is certain to be 2~2. The Shannon entropy an L̂2 measurement is zero for this mixture.



40

2.5 Thermal equilibrium mixed states

One method for finding thermal-equilibrium mixed states is to calculate a canonical den-

sity matrix which is diagonal with Boltzmann-distributed energies.[21] Let {|n〉} denote

energy eigenstates with eigenvalues {En}, and define inverse temperature β ≡ 1/(kT ). (The

k is Boltzmann’s constant.) The canonical density matrix is:

ρ̄ =
1

Z

N∑
n=1

|n〉〈n|e−βEn Z ≡
N∑
n=1

e−βEn

The probability of energy measurement result En is the diagonal element ρ̄nn, which is

assumed to be proportional to its Boltzmann factor e−βEn . The partition function Z is a

normalization factor to ensure Tr[ρ̄] = 1. The sums are over all energy eigenstates, not over

all eigenvalues. For degenerate systems, the distinction is important: if multiple orthogonal

states share the same eigenvalue En, then the factor e−βEn is counted multiple times. Note

also that adding the same constant to all eigenvalues En does not change ρ̄.

In Section 2.4, the surprisal of an event with probability P was defined to be log(1/P ) =

− log(P ). For nondegenerate systems, assigning a Boltzmann distribution to energy mea-

surement probabilities is equivalent to claiming that a plot of Surprisal(En) consists of

points on a line with slope β and y-intercept log(Z).6

Surprisal(En) ≡ − log
(
P (En)

)
= − log

(
1
Z e
−βEn

)
= log(Z) + βEn

For a qubit with the usual reference Hamiltonian Ĥ = −1
2εσ̂z, the two possible energies are

E0 = −1
2ε and E1 = +1

2ε. The canonical qubit density matrix is:

ρ̄ =
|0〉〈0|e

1
2βε + |1〉〈1|e−

1
2βε

e
1
2βε + e−

1
2βε

=
1

2 cosh(1
2βε)

e1
2βε 0

0 e−
1
2βε


The energy measurement probabilities for this density matrix are:

P (ground) = ρ̄00 =
e

1
2βε

2 cosh(1
2βε)

=
1

1 + e−βε
= 1

2 + 1
2 tanh

(
1
2βε
)

P (excited) = ρ̄11 =
e−

1
2βε

2 cosh(1
2βε)

=
1

1 + eβε
= 1

2 −
1
2 tanh

(
1
2βε
)

6In machine learning, Boltzmann-distributed random variables are also known as log-linear models.
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In terms of Pauli coordinates, the canonical density matrix is:

ρ̄ =
1

2

1 + tanh(1
2βε) 0

0 1− tanh(1
2βε)

 ⇔ r̄ =


0

0

tanh(1
2βε)


Thermal-equilibrium mean states are found on the z axis of the Bloch ball. The North pole

is the “coldest” state: it has zero von Neumann entropy and is the limit of r̄ as T → 0+.

In the “hot” limit T → ∞, r̄ approaches the maximum-entropy mean state r̄ = 0. Figure

2.3 shows a plot of the von Neumann entropy of ρ̄ as a function of kT/ε.

Figure 2.3: vN entropy (in bits) of the canonical density matrix as a function of kT/ε.

2.5.1 Negative temperatures

Canonical density matrices can also be defined for negative temperatures. This counter-

intuitive property can be explained more easily in terms of inverse temperature. A classical

thermodynamic macrostate is an ordered triple (U, V,N), where the letters represent

internal energy, volume, and particle number.7 Thermodynamic properties are determined

by an entropy function S(U, V,N). The classical definition of temperature T is:

kT ≡
(
∂S(U, V,N)

∂U

)−1

Instead of temperature, define the greed β of a thermodynamic macrostate:

β ≡ ∂S(U, V,N)

∂U
=

1

kT

Greed has units of bits per Joule (or nats per Joule, or digits per Joule). The name is a

mnemonic based on an analogy from Schroeder’s Thermal Physics textbook.[22] A system

with large positive β is “greedy for energy” and tends to acquire energy from its neighbors

until all interacting systems have approximately equal greed. A system with negative β

is “generous” and tends to give energy to its neighbors. (Schroeder jokingly refers to

7For systems with multiple particle types, N can be promoted to a vector.
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negative-β macrostates as enlightened.) Greed also replaces “absolute zero temperature”

with “infinite greed,” which may be easier to interpret as a theoretical idealization.

The tanh function is odd: tanh(−1
2βε) = − tanh(1

2βε). Every thermal qubit mixed state

with β > 0 thus has a generous counterpart found by reversing the sign of its z̄ coordinate.

As β →∞, r̄ approaches the infinitely-greedy ground state, which is physically incapable of

giving energy. Its infinitely-generous counterpart with β → −∞ is the excited state, which

cannot accept energy. The midpoint of these extremes is the maximum-entropy mixed state

r̄ = 0, which has β = 0 and is neither greedy nor generous.

Figure 2.4 shows two plots of P (excited) as a function of βε or kT/ε. For negative temper-

atures, the probability of detecting the higher-energy result is greater than the maximum-

entropy value of 50%. In this sense, T < 0 should be interpreted as “hotter than T =∞,”

which is counter-intuitive. An easier mnemonic is: thermal mixed states with β < 0 have a

surplus of energy, so they tend to give it away generously.

Figure 2.4: Probability of detecting excited energy +1
2ε for a thermal-equilibrium qubit.

Top: P (excited) as function of βε. Bottom: P (excited) as function of kT/ε.

For an N -level quantum system, the maximum-entropy canonical density matrix is ρ̄ = 1
N 1̂.

The expectation value of an energy measurement is 〈H〉 = Tr[ρ̄Ĥ] = 1
NTr[Ĥ]. Any mixed

state with 〈H〉 > 1
NTr[Ĥ] must lose energy to reach the maximum-entropy mixture. In

Schroeder’s analogy, these systems tend to behave generously.

2.5.2 Binary entropy, logit, and logistic functions

Thermal qubit calculations can be simplified by using special functions related to the logistic

distribution. From Section 2.4, the von Neumann entropy of a qubit mean state is:

S(r̄) = −1 + |̄r|
2

log

(
1 + |̄r|

2

)
− 1− |̄r|

2
log

(
1− |̄r|

2

)
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Define the binary entropy function C(p):8

C(p) ≡ −p log(p)− (1− p) log(1− p) for 0 < p < 1

C(p) is “coin-toss entropy,” i.e. the Shannon entropy of a random variable with two dis-

tinct outcomes, one of which occurs with probability p. To ensure compatibility with the

Shannon-entropy convention 0 log(0) → 0, define C(0) and C(1) to be zero. With this

definition, the von Neumann entropy of a qubit mean state is:

S(r̄) = C
(

1
2 + 1

2 |̄r|
)

The derivative of the binary entropy function is (using base-e for logarithms):

C ′(p) = − log(p)− 1 +
1

1− p
+ log(1− p)− p

1− p
= log

(
1− p
p

)
This is the negative of the logit function, also called the log-odds of p:

logit(p) ≡ log

(
p

1− p

)

Figure 2.5 shows plots of C(p) and logit(p).

Figure 2.5: Binary entropy and logit functions in base-2.
Top: binary entropy function C(p). Bottom: logit function logit(p).

8The notation H2(p) is more common, but this conflicts with Hamiltonian and heads.
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The relationship C ′(p) = −logit(p) remains valid for other bases if C(p) and logit(p) are

both defined using the same logarithm base:

Cb(p) ≡ −p logb(p)− (1− p) logb(1− p) logitb(p) ≡ logb

(
p

1− p

)
If logit is defined using base e, then its inverse function is the logistic function:

logistic(x) ≡ ex

1 + ex
=

1

1 + e−x
= 1

2 + 1
2 tanh(1

2x)

The logistic function is the cumulative distribution of the standard logistic distribution, and

it is also the solution to the nonlinear logistic differential equation with initial value 1/2.

For the present purposes, it is useful because it provides a concise way to write thermal-

equilibrium qubit mixed states. Using base-e, the canonical qubit density matrix is:

ρ̄ = 1
2 1̂ + 1

2 tanh(1
2βε)σ̂z =

logistic(βε) 0

0 logistic(−βε)

 = logistic(βεσ̂z)

Logistic and logit are inverse functions, so this result can be used to define the greed (or

temperature) of any diagonal qubit density matrix as a function of its z-coordinate:

βε = logit(ρ̄00) = logit
(

1
2 + 1

2z
)

2.5.3 MaxEnt mean states

The canonical qubit density matrix can be derived using a version of the maximum en-

tropy principle. This method calculates the mean state which maximizes von Neumann

entropy subject to a constraint on the expected energy of the qubit.

As before, consider a qubit with reference Hamiltonian Ĥ = −1
2εσ̂z. The energy expec-

tation value of a state with Pauli coordinates (x, y, z) is 〈H〉 = Tr[ρ̂Ĥ] = −1
2εz. For any

U ∈ [−1
2ε,

1
2ε], define a macrostate ΩU as the set of all pure qubit states whose energy

expectation value equals U . For notational clarity, define a dimensionless energy u ≡ U/ε.

The macrostate ΩU is then the set of all Bloch vectors r such that

z = −2u and |r|2 = x2 + y2 + 4u2 = 1

Unless U = ±1
2ε, many pure states are consistent with the constraint 〈H〉 = U . Represent

the true state r as a random variable with sample space ΩU . What probability distribution

should be assigned to r? The MaxEnt principle suggests choosing a distribution which
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maximizes S(r̄). S(r̄) is a function of mean-state radius |̄r| only, and it is maximized by

minimizing |̄r|. The maximum-entropy mean state with z̄ = −2u is therefore:

r̄ = (0, 0,−2u)

Many distributions are consistent with this mean state. For example, one could assign a

distribution with two equally-probable outcomes r = (±
√

1− 4u2, 0,−2u), or a continuous

distribution which is uniform in φ with fixed θ = arccos(−2u). But regardless of the

distribution used to calculate them, MaxEnt mean states are located on the z-axis.

Define an entropy function S which inputs U and returns the von Neumann entropy of the

MaxEnt mean state with 〈H〉 = U . In terms of the binary entropy function C,

S(U) = C(1
2 + 1

2 |̄r|) = C(1
2 + 1

2 |z̄|) = C(1
2 + 1

ε |U |)

Define the greed of a MaxEnt mean state as the U derivative of its entropy function:

β ≡ ∂S

∂U
= S′(U) =


1
ε logit(1

2 + 1
ε |U |) if U < 0

1
ε logit(1

2) = 0 if U = 0

−1
ε logit(1

2 + 1
ε |U |) if U > 0

Using the symmetry property −logit(1
2 + u) = logit(1

2 − u) (see Figure 2.5), these results

can be consolidated into one formula:

βε = logit
(

1
2 −

1
εU
)

= logit
(

1
2 + 1

2z
)
⇔ logistic(βε) = 1

2 + 1
2z

The unique MaxEnt mean state which satisfies the constraint S′(U) = β must be:

ρ̄ =

logistic(βε) 0

0 logistic(−βε)


which is the canonical qubit density matrix.
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3 RANDOM QUBITS

The examples in this chapter are are intended to introduce drunk models without the

distracting technical difficulties of solving stochastic differential equations on manifolds.

These models are too simple to realistically describe qubit decoherence, but they illustrate

the physical assumptions of the stochastic models in Chapter 4. In particular, each demon-

strates how unitary evolution can appear to turn pure states into mixed states if one does

not carefully distinguish between true states, mean states, and estimated states.

The quantum Loschmidt paradox echoes Loschmidt’s criticism of Boltzmann’s H-theorem:

how can reversible laws of physics lead to irreversible time evolution?1 If time evolution

of quantum systems is unitary, then unobserved states evolve reversibly and von Neumann

entropy is constant in time. Does von Neumann entropy disobey the Second Law of Ther-

modynamics, or do states evolve in a non-unitary way?

For the thought experiments in this chapter, the answer is “none of the above.” In each

example, an initial pure state appears to gain von Neumann entropy. The paradoxes are

resolved by defining entropy exclusively for random variables, not for physical systems. This

semantic convention is closely related to Jaynes’ and Wigner’s characterization of entropy

as “an anthropomorphic concept,” which is discussed in Chapter 7.[24]

The Allyson’s Choice and Decoherence by 1000 Small Cuts thought experiments originally

appeared in [25]. They were designed to show that, at least for some experiments, laboratory

noise reversibly encrypts quantum information rather than irreversibly destroying it.

In the Zech’s Qubit thought experiment, a qubit state is altered by a noisy classical field. If

the field is measured precisely by some external equipment, then it is possible to calculate

the true state and return the qubit to its initial state using only unitary operations. In this

case, the effects of decoherence can be “undone” in a way which is conceptually similar to

more sophisticated engineered decoherence experiments such as [26].

1The quantum Loschmidt paradox should not be confused with the cosmological time-reversal paradox,
which may or may not be related. See e.g. [23] for a discussion of both.
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3.1 Allyson’s choice

Professor Bob intends to replicate a welcher-weg experiment to demonstrate de Broglie

interference for his students. A particle launcher sends many identical neutrons, one at

a time, through the Mach-Zender interferometer shown in Figure 3.1. Two physically-

separated detectors are each designed to click if a neutron is detected. According to quantum

theory, the detection probabilities depend sinusoidally on ϕ, the difference of phases acquired

by the neutron’s wavefunction along either path.

Bob’s graduate student Allyson plans a prank designed to make Bob’s data appear consistent

with classical mechanics. Before each neutron is launched, she flips a fair coin, records the

result, and saves it to a file on a flash-memory stick. If the coin lands heads-up, then

she runs the experimental trial as Bob intended. If tails, then she covertly reverses the

orientation of the second beamsplitter.2 If the ratio of heads/tails results is ≈ 1, then Bob’s

detector counts will appear to be independent of ϕ.

Bob erroneously concludes that the neutrons in the experiment have decohered into classical

states. From Bob’s point of view, the neutrons’ evolution appears irreversible: the state

of each neutron is pure before passing through the interferometer and mixed afterward.

Contrariwise, Allyson represents each neutron using pure states only. She plans to reveal

the prank to Bob by sorting the data into “heads only” and “tails only” sets, each of which

clearly shows ϕ-dependent detector counts. From Allyson’s point of view, evidence of de

Broglie interference was not destroyed – it was merely hidden from Bob.

Unfortunately, Allyson misplaces her memory stick before revealing the prank. Without

knowing which trials were “heads” results and which were “tails,” she cannot unscramble

Bob’s data. Though she cannot calculate the true state of the neutron on any given trial,

she can still represent each coin toss as a random variable and calculate a mean state. The

coin-toss history file then becomes a literal example of missing information.

Bob’s intended experiment is a simplifed version of experiments such as [27].3 The neutron’s

true state is assumed to evolve by unitary transformations on each trial. Neutron inter-

ferometry is used because it is a well-researched topic which is relatively easy to visualize.

Similar experiments with different interferometer confgurations have been performed using

sodium atoms, C60 buckyballs, and even larger molecules.[30][31][32]

2Adjusting a beamsplitter thousands of times without one’s advisor noticing may be impractical. More
realistically, imagine the second splitter’s orientation is controlled by a computer. Allyson secretly alters its
control software to choose one of two equally-probable pseudo-random outcomes before each trial.

3The experiment also resembles Wheeler’s delayed-choice experiment as described in [28] and realized in
[29]. Wheeler’s primary question – “Can information propagate faster than light?” – is avoided by replacing
the photon with a nonrelativistic neutron with kinetic energy � mnc

2.
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Mathematically-identical experiments which use different qubit designs are also possible.

For examples using superconducting qubits, see e.g. [33] and [34]. Subsection 3.2.2 rewrites

the experiment in terms of Bloch-sphere rotations for a generic qubit.

3.1.1 Bob’s intended experiment

On each trial, a single neutron is sent through a lossless beamsplitter S1. Two mirrors

ML,MR, a second splitter S2, and two detectors DL, DR are placed as shown in Figure 3.1.

At each stage, the two paths available to the neutron are arbitrarily named |L〉 and |R〉.
Each neutron can be detected by either DL or DR, but not both.

Figure 3.1: Mach-Zender interferometer for Bob’s intended welcher-weg experiment.
S1, S2 are lossless beamsplitters. ML,MR are mirrors. DL, DR are detectors.

Classically, one expects the neutron to either reflect from or transmit through each splitter.

For example, the neutron might reflect from S1, then transmit through S2 to be detected

by DL. The two splitters produce four mutually-exclusive classical possibilities:

start→ |R〉 → DR start→ |R〉 → DL start→ |L〉 → DR start→ |L〉 → DL

Quantum mechanics allows each splitter to send the neutron to a superposition of trans-

mitted and reflected paths. Represent any such superposition with a column vector:

|Ψ〉 = α|L〉+ β|R〉 =

α
β


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Following the advice of Zeilinger in [35], assume the action of each splitter on the column

vector |Ψ〉 can be represented by a 2×2 special unitary matrix:

Ŝ =

rLL tLR

tRL rRR

 rRR = r∗LL, tRL = −t∗LR, Det[Ŝ] = rRRrLL − tRLtLR = 1

The numbers rLL, rRR, tLR, tRL are (complex) reflection and transmission coefficients. Bob

chooses to use splitters Ŝ1 and Ŝ2 as follows:

Ŝ1 =
1√
2

 1 1

−1 1

 Ŝ2 = (Ŝ1)−1 =
1√
2

1 −1

1 1


The first splitter has equal transmission and reflection probabilities, and it produces no

phase shift along either path. Let |Ψ0〉 = |R〉 be the initial state of the neutron. Its state

after passing through the first splitter Ŝ1 is:

Ŝ1|Ψ〉 =
1√
2

 1 1

−1 1


0

1

 =
1√
2

1

1


Bob orients the second splitter such that Ŝ2 = Ŝ−1

1 = Ŝ†1.

As the neutron travels, its wavefunction acquires a phase shift.4 The overall phase of

|Ψ〉 is unobservable, but the phase difference between different paths can affect detection

probabilities. Represent the phase shifts with a diagonal unitary operator Φ̂. The composite

operation “do Ŝ1, then Φ̂, then Ŝ2” is represented by the operator product Ĥ ≡ Ŝ2Φ̂Ŝ1.

(The notation Ĥ is chosen to suggest heads, not Hamiltonian.)

Φ̂ ≡

eıθL 0

0 eıθR

 Ĥ = Ŝ2Φ̂Ŝ1 = eıθL
1

2

1 + eıϕ 1− eıϕ

1− eıϕ 1 + eıϕ

 ϕ ≡ θR − θL

If the neutron’s initial state is |R〉, then it reaches the detectors in state Ĥ|R〉:

|ΨH〉 ≡ Ĥ|R〉 = eıθL
1

2

1 + eıϕ 1− eıϕ

1− eıϕ 1 + eıϕ


0

1

 = eıθL
1

2

1− eıϕ

1 + eıϕ


4Depending on the details of the experiment, the physical source of this phase shift might be e.g. a

gravitational or magnetic potential [27] or pure de Broglie interference.[32]
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The probabilities of the neutron being detected by DL and DR are:

P (DL) = ||〈L|Ĥ|R〉||2 = ||12(1− eıϕ)||2 = 1
2(1− cosϕ)

P (DR) = ||〈R|Ĥ|R〉||2 = ||12(1 + eıϕ)||2 = 1
2(1 + cosϕ)

Bob’s intended experimental procedure is:

1. For each trial, send one neutron through the interferometer.

2. Every 1000 trials, adjust the path lengths such that ϕ advances by some amount ∆.

3. Plot the number of DL and DR counts for each value of ϕ.

Fig. 3.2 shows simulated detector counts with ∆ = π
8 .

Figure 3.2: Bob’s intended histogram.
Horizontal axis is phase shift ϕ between paths. Blue: DL counts. Red: DR counts.

3.1.2 Allyson’s randomized experiment

On any trial for which Allyson’s coin lands heads, she reverses the orientation of Ŝ2 so that

its matrix representation is ŜT2 = Ŝ†2 = Ŝ1. The action of the M-Z apparatus on |Ψ〉 is then

represented by a unitary “tails” operator T̂ = Ŝ1Φ̂Ŝ1:

T̂ ≡ Ŝ1Φ̂Ŝ1 = eıθL
1

2

 1− eıϕ 1 + eıϕ

−1− eıϕ −1 + eıϕ


For tails trials, she calculates that the state vector immediately prior to detection is T̂ |R〉:

|ΨT 〉 ≡ T̂ |R〉 = eıθL
1

2

 1 + eıϕ

−1 + eıϕ


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If the coin lands tails, then she calculates the detector probabilities to be:

P (DL|tails) = ||〈L|T̂ |R〉||2 = ||12(1 + eıϕ)||2 = 1
2(1 + cosϕ)

P (DR|tails) = ||〈R|T̂ |R〉||2 = ||12(−1 + eıϕ)||2 = 1
2(1− cosϕ)

If the coin lands heads, then she predicts the same detection probabilities as Bob:

P (DL|heads) = ||〈L|Ĥ|R〉||2 = ||12(1− eıϕ)||2 = 1
2(1− cosϕ)

P (DR|heads) = ||〈R|Ĥ|R〉||2 = ||12(1 + eıϕ)||2 = 1
2(1 + cosϕ)

The total probabilities for each detector are found by the Law of Total Probability:

P (DL) = P (DL|heads)P (heads) + P (DL|tails)P (tails) = 1
2

P (DR) = P (DR|heads)P (heads) + P (DR|tails)P (tails) = 1
2

Figure 3.3 shows results from a simulation of Allyson’s randomized experiment.

Figure 3.3: Bob’s sabotaged results.
Horizontal axis is phase shift ϕ between paths. Blue: DL counts. Red: DR counts.

Allyson’s shenanigans have concealed all evidence of de Broglie interference. From Bob’s

point of view, each neutron appears to have decohered to a classical state during its journey

through the interferometer. Bob then faces a quantum Loschmidt paradox: the neutron

evolved only by passing through unitary beamsplitters and reflecting off perfect mirrors, so

its evolution must have been reversible. Where did the information go?

In this case, the resolution is simple: Bob’s assumption of identical trials is simply wrong.

Allyson knows that the neutron evolved reversibly and unitarily during each trial. Using
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her coin-toss history file, she writes a program to unscramble the data. The program finds

all trials marked “tails,” stores them separately from the “heads” trials, and produces a

histogram for each set of trials. Pseudocode is shown below:

for each phi:

for each trial:

if coin was heads:

number_of_heads += 1

if neutron was detected on left:

heads_wins[phi] += 1

else if coin was tails:

number_of_tails += 1

if neutron was detected on left:

tails_wins[phi] += 1

plot histogram of (heads_wins) and (number_of_heads - heads_wins)

plot histogram of (tails_wins) and (number_of_tails - tails_wins)

Examples of this program’s output are shown in Figure 3.4.

Figure 3.4: Allyson’s decrypted results. Top: heads trials only. Bottom: tails trials only.
Horizontal axis is phase shift ϕ between paths. Blue: DL counts. Red: DR counts.
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3.1.3 Information was encrypted, not destroyed

Even if Bob discovers Allyson’s subterfuge, he cannot unscramble the data without knowing

the results of the coin flips. The data has effectively been encrypted with a provably-secure

one-time pad, and the coin-toss history is its password.5 As an example, suppose the first

8 coin toss results were THHT THTH. The first 8 states must have been:

|ΨT 〉, |ΨH〉, |ΨH〉, |ΨT 〉, |ΨT 〉, |ΨH〉, |ΨT 〉, |ΨH〉

Represent Allyson’s list of states, Bob’s list of intended states, and the coin-toss results each

as a binary string with 0 for heads and 1 for tails. Bob’s list is then a plaintext composed

entirely of zeros, Allyson’s list is a ciphertext, and the coin-toss history is a password. Table

3.1 shows the encryption scheme, which is a binary Vernam cipher: add (mod 2) each

element in the plaintext to the corresponding element in the password. The password meets

all the requirements of a one-time pad: it is the same length as the plaintext, used only

once, and each bit is chosen randomly with 0 and 1 equally probable.

Table 3.1: Example cipher for coin history THHT THTH.

Bob’s plaintext 0 0 0 0 0 0 0 0

+ Coin result (mod 2) 1 0 0 1 1 0 1 0

= Allyson’s ciphertext 1 0 0 1 1 0 1 0

Now suppose that before decrypting the data, Allyson misplaces her coin-toss history file.

Without the password, neither Allyson nor Bob knows what state was actually present on

any given trial. But not all information about the experiment is lost: Allyson knows each

state was either |ΨH〉 or |ΨL〉. For each of these states, Allyson constructs a pure density

matrix |Ψ〉〈Ψ|. She can now represent the true state as a density-matrix-valued random

variable with two equally-probable outcomes ρ̂H and ρ̂T :

ρ̂H ≡ |ΨH〉〈ΨH | =
1

4

1− eıϕ

1 + eıϕ


[
1− e−ıϕ 1 + e−ıϕ

]
=

1

2

1− cos(ϕ) −ı sin(ϕ)

ı sin(ϕ) 1 + cos(ϕ)


ρ̂T ≡ |ΨT 〉〈ΨT | =

1

4

 1 + eıϕ

−1 + eıϕ


[
1 + e−ıϕ − 1 + e−ıϕ

]
=

1

2

1 + cos(ϕ) −ı sin(ϕ)

ı sin(ϕ) 1− cos(ϕ)


5See [36] for the relevant definitions and Shannon’s security proof. Kotelnikov independently proved a

similar result in a classified report.[37]
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The mean state is the expectation value of the true state:

ρ̄ ≡ E[ρ̂] =
1

2
ρ̂H +

1

2
ρ̂T =

1

2

 1 −ı sin(ϕ)

ı sin(ϕ) 1


The diagonal elements of ρ̄ are the total probabilities of DL or DR detecting the neutron.

The mean state predicts both probabilities are 1
2 regardless of the phase difference ϕ. If

Bob’s skeptical students argue that quantum theory is wrong and the neutrons behaved

classically, Allyson and Bob will be unable to prove otherwise without finding the missing

coin-toss history or performing another experiment. By misplacing the password, Allyson

has effecively encrypted the data and thrown away the key.

Eigenvalues of ρ̄ are λ± = 1
2 [1± sin(ϕ)]. The mean state is pure only if the eigenvalues are 1

and 0, which occurs only on trials for which | sin(ϕ)| = 1. Figure 3.5 shows the von Neumann

entropy of the mean state, which is given by the following unwieldy expression:

S[ρ̄] = −
[
λ+ log(λ+) + λ− log(λ−)

]
=

1

2

[
log

(
4

cos2[ϕ]

)
+ log

(
1− sin[ϕ]

1 + sin[ϕ]

)
sin[ϕ]

]

Figure 3.5: Von Neumann entropy (bits) of mean state as a function of ϕ.

Each mean state can be given a Fano-style interpretation as a “state of less than maximum

information.” For each trial, Allyson accidentally discarded 1 bit of information: the answer

to the question “heads or tails?” For trials in which | sin(ϕ)| ≈ 1, this information is

mostly irrelevant; ρ̂H ≈ ρ̂T , so the neutron’s state can be calculated approximately without

knowing the result of the coin toss for that trial. When sin(ϕ) ≈ 0, the mean state is near

the maximum-entropy mixture 1
2 1̂, and its von Neumann entropy is S[ρ̄] ≈ 1 bit. In these

cases, neither Allyson nor Bob has any idea what state was actually present.

In this thought experiment, irreversibility is an accidental inconvenience, not a fundamental

law of physics. By assumption, each neutron’s state vector evolved unitarily and reversibly

on each trial; it is only the mean state ρ̄ which has gained entropy. Even this evolution is

not absolutely irreversible: if Allyson finds the missing memory stick, then she can decrypt

the data and avoid the need to use a mixed-state representation. Information is “missing”

from Allyson’s and Bob’s description of the experiment, not from the universe.
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3.2 Decoherence by 1000 small cuts

In a real laboratory, Nature often plays the role of saboteur, and Nature generally does not

bother saving a detailed history of its actions to a file on a memory stick. This thought

experiment assumes Allyson and Bob collaborate perfectly, but their laboratory does not.

Bob repeats his neutron-interferometry experiment, and this time Allyson cooperates fully.

This time, their control of the interferometer is imperfect in a very specific way: the phase

difference ϕ between the neutron paths varies erratically by an amount that is not negligible

but is impractical to measure directly.

The randomness in this thought experiment is contrived for mathematical convenience.

The physical source of imprecision in ϕ is left to readers’ imaginations; perhaps it is seismic

vibrations, thermal expansion of the hardware, or some other nuisance. For a realistic

description of phase noise in Mach-Zehnder matter interferometers, see e.g. [38].

Allyson and Bob calculate that the state immediately before detection will be:

ρ̂ =
∣∣ΨH

〉〈
ΨH

∣∣ =
1

2

1− cos(ϕ) −ı sin(ϕ)

ı sin(ϕ) 1 + cos(ϕ)


To reduce fluctuations, they decide to perform 1000 trials for each value of ϕ. In an

ideal experiment, the Law of Large Numbers implies that the ratio DL/DR of detection

counts will, with high probability, be close to its expectation value ||〈L|Ψ〉||2 / ||〈R|Ψ〉||2.

Unfortunately, imprecise control of ϕ means ρ̂ is not identical for all trials.

3.2.1 A convoluted model

To account for errors in ϕ, Allyson and Bob represent ϕ as a random variable which is

identically distributed over all 1000 trials. Neither scientist can calculate the precise true

state of the neutron on any trial, but they can assign ϕ a probability distribution. As

an approximation, they assign ϕ a normal distribution with mean µ and variance σ2. For

calculational simplicity, suppose they have near-perfect control of µ, but σ2 is some fixed

positive number. For each value of µ, they calculate a mean state ρ̄:

ρ̄ ≡ E[ρ̂] =

∫ ∞
−∞

ρ̂(ϕ)p(ϕ)dϕ =

∫ ∞
−∞

1

2

1− cos(ϕ) −ı sin(ϕ)

ı sin(ϕ) 1 + cos(ϕ)

 e− 1
2(ϕ−µσ )

2

σ
√

2π
dϕ
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Each matrix element is a convolution.6 The resulting mean state is:

ρ̄ =
1

2

1 0

0 1

+
1

2

− cos(µ) −ı sin(µ)

ı sin(µ) cos(µ)

 e− 1
2
σ2

This mean state predicts the following detection probabilities:

P (DL) = 1
2 −

1
2 cos(µ)e−

1
2
σ2

P (DR) = 1
2 + 1

2 cos(µ)e−
1
2
σ2

If Bob wants to convince his students that de Broglie interference is a real phenomenon,

he and Allyson must keep the variance of ϕ as small as possible. In the limit σ2 → 0, ρ̄ is

pure. If 0 < σ2 � 1, then Bob’s plot is similar to what he expected: sinusoidal oscillations

with slightly reduced amplitude. But as σ2 increases, the amplitude of oscillations decreases

exponentially. If σ2 � 1, then ρ̄ ≈ 1
2 1̂ and the predicted sinusoidal phase dependence is

hopelessly scrambled by the cumulative effect of a thousand small experimental errors.

Quantum computing experimenters will probably not be surprised by the conclusion that

noisy experiments can produce classical-looking results. But it may be surprising that any

credible prediction at all can be made from such a crudely oversimplified model. The model

used here makes no attempt to describe the laboratory environment or any extra degrees of

freedom for the neutron – it only assumes that on each trial, ϕ is a random variable which

is i.i.d. normal with mean µ controlled by experimenters and constant variance σ2.

The point is: not-quite-identical trials can corrupt a quantum experiment such that phys-

ical states appear to decohere. Uncontrolled interactions “hide” quantum information by

effectively encrypting the sequence of final states. If a complete history of all interactions

in an experiment is not recorded, then it may be impossible to decrypt the resulting data.

A mixed-state representation of the system may become a practical necessity even if the

true state vector evolved by unitary transformations on every trial.

3.2.2 Generalization to other qubit designs

The Allyson’s Choice and 1000 Cuts experiments use neutron inferferometry – but in prin-

ciple, both experiments can be realized using any qubit design. (In practice, doing so may

require substantial experimental skill.) One simply redefines |L〉 and |R〉 to be the ground

and excited energy eigenstates |0〉 and |1〉. The next step is to find some physical processes

which alter the qubit state |Ψ〉 in the same way the unitary operators Ŝ1 and Φ̂ do. The

6Here ϕ ∈ (−∞,∞). One could instead restrict ϕ to the interval [0, 2π), in which case the probability
density p(ϕ) becomes a wrapped Gaussian and the integrals are circular convolutions.
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result of acting Ŝ1 on a generic qubit (pure or mixed) state ρ̂ is Ŝ1|Ψ〉〈Ψ|Ŝ†1:

|Ψ〉 → Ŝ1|Ψ〉 |Ψ〉〈Ψ| → Ŝ1|Ψ〉〈Ψ|Ŝ†1 ρ̂ → Ŝ1ρ̂Ŝ
†
1

Written as a real linear combination of 1̂ and Pauli matrices, the transformed state is:

Ŝ1ρ̂Ŝ
†
1 =

1

4

 1 1

−1 1


 1 + z x− ıy

x+ ıy 1− z


1 −1

1 1

 =
1

2

 1 + x −z − ıy

−z + ıy 1− x


=

1

2

(
1̂− zσ̂x + yσ̂y + xσ̂z

)
An initial state r = (x, y, z) is transformed to (−z, y, x). Let Ŝ1 denote the matrix repre-

senting Ŝ1 in Pauli coordinates. This matrix must be:

Ŝ1 =


0 0 −1

0 1 0

1 0 0

 Ŝ1r =


0 0 −1

0 1 0

1 0 0



x

y

z

 =


−z

y

x


Ŝ1 can be visualized as a −90◦ y-axis rotation on the Bloch sphere. (The sign convention

used here is: a positive x rotation moves r clockwise as viewed by someone looking in the

+x direction. Similar conventions are used for y and z.)

The action of Φ on a generic qubit pure state is ρ̂→ Φ̂ρ̂Φ̂†:

Φ̂ρ̂Φ̂† =
1

2

eıθL 0

0 eıθR


 1 + z x− ıy

x+ ıy 1− z


e−ıθL 0

0 e−ıθR

 =
1

2

 1 + z (x− ıy)e−ıϕ

(x+ ıy)eıϕ 1− z


where, as before, ϕ ≡ θR − θL is the phase difference between the two neutron paths. The

real and imaginary parts of the off-diagonal terms are:

(x+ ıy)eıϕ =
[
x cos(ϕ)− y sin(ϕ)

]
+ ı
[
x sin(ϕ) + y cos(ϕ)

]
(x− ıy)e−ıϕ =

[
x cos(ϕ)− y sin(ϕ)

]
− ı
[
x sin(ϕ) + y cos(ϕ)

]
As a real linear combination of 1̂ and Pauli matrices, the transformed state Φ̂ρ̂Φ̂† is:

Φ̂ρ̂Φ̂† =
1

2

(
1̂ +

[
x cos(ϕ)− y sin(ϕ)

]
σ̂x +

[
x sin(ϕ) + y cos(ϕ)

]
σ̂y + zσ̂z

)
Φ̂ sends a state with Bloch vector (x, y, z) to (x cos(ϕ) − y sin(ϕ), x sin(ϕ) + y cos(ϕ), z).
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The matrix representing Φ̂ in Pauli coordinates therefore must be:

Φ̂ =


cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1


This matrix is a ϕ rotation about the z-axis. Figure 3.6 shows a visualization of acting Ŝ1

on the excited state (0, 0,−1), then acting Φ̂ on the result with ϕ set to 180◦.

Figure 3.6: Action of the operator Φ̂Ŝ1 on the excited state (0, 0,−1).

Left: Ŝ1 is a −90◦ rotation about the y-axis. Right: Φ̂ is a ϕ rotation about the z-axis.
(In this picture, the parameter ϕ was chosen to be 180◦.)

In Bob’s intended experiment, the neutron’s initial state is |R〉, which has been renamed

|1〉. The state immediately prior to detection is Ŝ†1Φ̂Ŝ1|1〉. In Bloch-sphere language, Bob’s

experimental apparatus performs the composite operation “rotate −90◦ about the y-axis,

then rotate ϕ about the z axis, then rotate +90◦ about the y-axis.” In Pauli coordinates,

the apparatus is represented by the operator Ĝ ≡ Ŝ†1Φ̂Ŝ1:

Ĝ =


0 0 1

0 1 0

−1 0 0




cos(ϕ) − sin(ϕ) 0

sin(ϕ) cos(ϕ) 0

0 0 1




0 0 −1

0 1 0

1 0 0

 =


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)


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The initial state is (0, 0,−1) = −z, so the final state is −Ĝz:

−Ĝz =


1 0 0

0 cos(ϕ) − sin(ϕ)

0 sin(ϕ) cos(ϕ)




0

0

−1

 =


0

sin(ϕ)

− cos(ϕ)


This result agrees with Bob’s original prediction:

ρ̂ =
1

2

(
1̂ + sin(ϕ)σ̂y − cos(ϕ)σ̂z

)
=

1

2

1− cos(ϕ) −ı sin(ϕ)

ı sin(ϕ) 1 + cos(ϕ)


Define a generalized Zeilinger-type apparatus (GZA) as any device whose effect on a

qubit state is represented in Pauli coordinates by a matrix of the form Ĝ ≡ Ŝ†1Φ̂Ŝ1. Roughly

speaking, the action of the GZA is mathematically equivalent to slicing a neutron in half,

sending its components on two distinct paths, then recombining the two parts coherently.

Figure 3.7 shows a depiction of a half-cycle GZA, i.e. Ĝ with ϕ set to 180◦.

Figure 3.7: Action of the GZA on energy eigenstates.
Left: Half-cycle GZA (ϕ = 180◦) applied to the ground state.

Right: The same operation applied to the excited state.

Bob’s intended experiment is equivalent to acting a GZA on a qubit excited state |1〉, then

measuring the qubit’s energy. When Allyson’s coin lands tails, she alters the GZA so that

the third operation rotates r in the opposite direction from what Bob intended.

To visualize the 1000 Cuts experiment on the Bloch sphere, define an operator-valued

random variable R̂ϕ which is equivalent to Ĝ with the phase difference ϕ represented by a

random variable rather than a constant. As before, let the initial state be (0, 0,−1). If ϕ is
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normally-distributed with mean µ and variance σ2, then the resulting mean state is:

E
[
− R̂ϕz

]
= −

∫ ∞
−∞

[
R̂ϕz

]
p(ϕ)dϕ =


0

sin(µ)e−
1
2σ

2

− cos(µ)e−
1
2σ

2


Define a randomized Zeilinger-type apparatus (RZA) as any device whose effect on a

qubit state is represented in Pauli coordinates by a matrix-valued random variable of the

form R̂ϕ. The RZA is a “state mixer” which appears to erase quantum information by

turning pure states into mixed states. More precisely, it performs a random rotation on

the Bloch sphere to produce a random pure state whose expectation value is a mixed state.

The RZA may be unpredictable, but it never destroys information.

These examples show the utility of Pauli and Bloch coordinates: qubit operations can be

described in purely geometric terms without reference to neutrons, beamsplitters, or the

physical details of a particular qubit design. (One might also consider an inverse question:

is it possible to use neutrons and beamsplitters to simulate an arbitrary unitary operation

on a finite-dimensional quantum state? According to [39], the answer is yes.)

3.3 Zech’s qubit

This thought experiment is loosely based on a colleague’s efforts to shield a Josephson-

junction qubit from stray magnetic fields. Zech places a spin-1
2 particle inside a black box

designed to isolate its contents from all interactions except a spatially-uniform magnetic field

which can be very precisely controlled. Zech sets the controls to produce a field B0 = B0z

of constant magnitude in the z direction. The box is flawless except for one weakness:

every day at exactly noon local time, the spin is exposed to a stray field which temporarily

changes B to B0(z + bx).

Zech spends several weeks measuring the duration τ and relative amplitude b of these

stray fields. As far as he can tell, both numbers vary randomly from day to day with no

predictable pattern. Today, he prepares the qubit in its ground state shortly before noon.

Can he predict what the qubit’s state will be after the stray field has passed?

The Hamiltonian operator for this system is Ĥ = −γB · Ŝ = −1
2γ~(Bxσ̂x +Byσ̂y +Bzσ̂z),

where γ is the gyromagnetic ratio of the particle. Let Ĥ0 denote the original Hamiltonian
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and Ĥ] the Hamiltonian whenever the stray field is active.

Ĥ0 =
−γ~B0

2

1 0

0 −1

 Ĥ] =
−γ~B0

2

1 b

b −1


For notational simplicity, define the natural angular frequency ω0 ≡ γB0 and the “sharp”

angular frequency ω] ≡ ω0

√
1 + b2. Eigenvalues of Ĥ0 are then ±1

2~ω0, and eigenvalues of

Ĥ1 are ±1
2~ω]. The Pauli coordinates of these operators are:

H0 = −~ω0

[
0 0 1

]T
H] = −~ω0

[
b 0 1

]T
The LvN equation is ~ṙ = H× r. When no stray field is present, it simplifies to:

ṙ = −ω0z× r = ω0


0 1 0

−1 0 0

0 0 0



x

y

z

 = ω0


y

−x

0


The solution rotates r about the z-axis with angular frequency −ω0.

x

y

z

 =


cos(ω0t) sin(ω0t) 0

− sin(ω0t) cos(ω0t) 0

0 0 1



x0

y0

z0


The qubit’s initial state is the ground state (0, 0, 1). Its state is unchanged until the stray

field appears at time t = 0. While the stray field is present, the LvN equation is:
ẋ

ẏ

ż

 = −ω0

(
bx + z

)
× r = ω0


0 1 0

−1 0 b

0 −b 0



x

y

z

 = ω0


y

−x+ bz

−by


The solution rotates r about the axis (b, 0, 1) with angular frequency −ω]:7

x

y

z

 =
1

1 + b2


b2 + cos(ω]t)

√
1 + b2 sin(ω]t) b− b cos(ω]t))

−
√

1 + b2 sin(ω]t) (1 + b2) cos(ω]t) b
√

1 + b2 sin(ω]t)

b− b cos(ω]t) −b
√

1 + b2 sin(ω]t) 1 + b2 cos(ω]t)



x0

y0

z0


7This result was found by symbolically calculating exp([H]×]t) in Mathematica.
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After τ seconds of exposure to the stray field, the qubit’s state is
x

y

z

 =
1

1 + b2


b− b cos(ω]τ)

b
√

1 + b2 sin(ω]τ)

1 + b2 cos(ω]τ)


After the stray field stops, the Hamiltonian reverts to H0 and the qubit rotates about the

z-axis for the next (t− τ) seconds. The qubit’s new state at time t > τ is:
x(t)

y(t)

z(t)

 =
1

1 + b2


cos(ω0[t− τ ]) sin(ω0[t− τ ]) 0

− sin(ω0[t− τ ]) cos(ω0[t− τ ]) 0

0 0 1



b(1− cos(ω]τ))

b
√

1 + b2 sin(ω]τ)

1 + b2 cos(ω]τ)



=
1

1 + b2


b cos(ω0[t− τ ])(1− cos(ω]τ)) + b

√
1 + b2 sin(ω0[t− τ ]) sin(ω]τ)

−b sin(ω0[t− τ ])(1− cos(ω]τ)) + b
√

1 + b2 cos(ω0[t− τ ]) sin(ω]τ)

1 + b2 cos(ω]τ)


If Zech measures the qubit’s energy at time t > τ , then the Born rule predicts he will find

the higher energy eigenvalue with probability P
(
excited|r

)
= 1

2(1− z).

P
(
excited|r

)
=

1

2

(
1− z

)
=

1

2
−

1 + b2 cos(ω]τ)

2(1 + b2)
=

b2

2(1 + b2)

[
1− cos(ω]τ)

]
Figure 3.8 shows P

(
excited|r

)
for τ ∈ [0, 4π] and b ∈ [0, 2]. For weak stray fields with |b| �

1, the qubit is barely affected. As |b| increases, oscillations become larger and faster.

Figure 3.8: P (excited) as a function of stray-field amplitude b and duration τ .
Left-right axis is ω0τ ∈ [0, 4π]. Front-back axis is b ∈ [0, 4]. Vertical axis is P (excited|r).
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If Zech does not precisely know τ and b, then he does not know what state is actually present

at t > 0, but can make an “educated guess” by calculating a mean state. For calculational

simplicity, suppose he represents τ and b as uniformly-distributed random variables on the

intervals [0, T ] and [−B,B], respectively. (A negative value for b means the stray field points

in the −x direction.) The mean state is the expectation value of the true state averaged

over all possible b values and all possible τ values:

r̄(t) =

∫ T
0

∫ B
−B

rt(b, τ)p(b, τ) dbdτ =
1

2BT

∫ T
0

∫ B
−B

rt(b, τ) db dτ

The mean state coordinates x̄, ȳ are zero because the integrands are odd functions of b:

xt(b, τ) =
b cos(ω0[t− τ ])(1− cos(ω]τ)) + b

√
1 + b2 sin(ω0[t− τ ]) sin(ω]τ)

1 + b2

yt(b, τ) =
−b sin(ω0[t− τ ])(1− cos(ω]τ)) + b

√
1 + b2 cos(ω0[t− τ ]) sin(ω]τ)

1 + b2

⇒
∫ B
−B

xt(b, τ) db = 0 and

∫ B
−B

yt(b, τ) db = 0

Note that ω] = ω0

√
1 + b2 depends on b. The z̄ coordinate is not as easy:

z̄(t) =
1

2BT

∫ T
0

∫ B
−B

1 + b2 cos(ω0τ
√

1 + b2)

1 + b2
db dτ

=
1

2BT

∫ B
−B

T
1 + b2

+
b2 sin(ω0T

√
1 + b2)

(1 + b2)3/2
db

=
arctan(B)

B
+

1

2BT

∫ B
−B

b2 sin(ω0T
√

1 + b2)

(1 + b2)3/2
db

In the long-duration limit T → ∞, the remaining integral vanishes.

lim
T →∞

z̄(t) =
arctan(B)

B

In this limit, Zech’s mean state ρ̄Z resembles the canonical qubit density matrix ρ̄C .

ρ̄Z =
1

2

1 + 1
B arctan(B) 0

0 1− 1
B arctan(B)

 ρ̄C =
1

2

1 + tanh( ~ω0
2kT ) 0

0 1− tanh( ~ω0
2kT )


To see the resemblance, define the pseudotemperature kT of Zech’s mean state as the

expected relative stray field magnitude times the qubit’s energy gap ~ω0:

kT ≡ ~ω0E[|b|] =
~ω0

2B

∫ B
−B
|b| db =

~ω0

B

∫ B
0
b db =

1

2
~ω0B



64

Subsituting this quantity for kT into the canonical density matrix gives:

P (excited) = logistic(− 2
B ) = 1

2 [1− tanh
(

1
B
)
]

This result does not exactly agree with Zech’s mean state, but it is qualitatively similar.

Figure 3.9 shows two plots of P (excited) as a function of B: one for Zech’s mean state, and

another for the canonical density matrix with the substitution kT → 1
2~ω0B.

Figure 3.9: P (excited) as a function of maximum stray-field strength B.
Black: Zech’s ρ̄Z with T → ∞. Color: Canonical ρ̄C with kT = 1

2~ω0B.

The analogy between temperature and pseudotemperature should not be taken too seriously.

The quantity B describes how violently Zech’s experiment is scrambled by environmental

interactions, which roughly agrees with physicists’ intuition about temperature. But the

“pseudo-” prefix is used to stress that Zech’s B is subjective: it depends on how precisely he

can predict the stray field. By contrast, temperature of a canonical qubit density matrix is

defined by an objective procedure: β ≡ S′(U), where S(U) is the maximum von Neumann

entropy of a qubit mean state with the constraint 〈H〉 = U .

In this thought experiment, the Loschmidt paradox is: “How did Zech’s qubit gain entropy

if it evolved unitarily?” The paradox can be resolved by replacing the phrase “entropy of the

qubit” with the phrase “entropy of the average taken over a distribution of possible states.”

In other words: Zech’s mean state r̄(t) gained entropy and the true state did not.

The qubit’s true state has been encrypted but not irreversibly destroyed. In this case, the

password is knowledge of the stray field’s duration τ and relative amplitude b. If Zech

has somehow precisely recorded these quantities, then he can “rewind” the qubit using a

procedure similar to the spin-echo methods explained in [40]. First he applies a field −B0

for (t − τ) seconds, then he reverses the effect of the stray field by applying −B] for τ

seconds. The qubit’s Bloch vector r then follows its previous trajectory in reverse.

Figure 3.10 shows four Monte Carlo simulations of Zech’s qubit. If the stray field was known

to be weak and short-lived, then the true state is probably close to the state Zech intended.

In the opposite limit, r̄ ≈ 0 and Zech has no idea what state is actually present.
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Figure 3.10: Monte Carlo simulations of Zech’s qubit at time ω0t = 10π.

5000 pseudorandom states are shown for stray-field duration ω0τ ∈ [0, 4π] and relative
amplitude b ∈ [−B,B]. Colors indicate maximum stray-field magnitude B = { 1

4 , 1
2 , 1, 2 }

Estimated mean states r̄ are found by averaging all samples of each color.
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4 STOCHASTIC QUBITS

This chapter attempts to focus on using results of stochastic calculus rather than proving

them. For readers who are not content to “shut up and calculate,” Appendix A provides

definitions and references to more rigorous mathematical explanations.

Drunk models do not attempt to describe the causes of experimental errors in detail. In

the spirit of Wigner’s random matrix models, environmental interactions are “assumed to

be so complicated that statistical considerations can be applied to them.”[41] Laboratories

are modeled as gambling machines whose statistical properties can be defined, but whose

details are too unpredictable to be represented precisely. The strengths and weaknesses of

environment-as-casino theories were summarized by Tanimura and Kubo:

The underlying stochastic process is merely a model appropriate for the problem

rather than something to be derived from microscopic considerations. This is

regarded as an advantage since it can cover a wide category of physical cases

from a unified point of view. Furthermore the calculations may be carried out

by non-perturbative methods.[42]

Each model in this chapter begins with a heuristic time-evolution equation of the form:

drt
dt

= −Bt × rt Bt = the B(t) a scientist intended + random noise

Here the true state rt and true Hamiltonian Bt are R3-valued stochastic processes. To

produce useful predictions, this vague statement requires a mathematical representation of

“random noise.” A slightly less ambiguous statement is this Langevin-type equation:

drt
dt

= −Bt × rt Bt = µ(t, rt) + Σ̂(t, rt)
dWt

dt
(Pre)

The mean field µ(t, rt) is a real 3D vector, the volatility matrix Σ̂(t, rt) is a real 3×3

matrix, Wt is a real 3D vector whose components are independent Wiener processes, and

the symbol dWt/dt is a poorly-defined avatar for Gaussian white noise. This symbol is

a useful heuristic, but it is ambiguous because Wt is almost nowhere differentiable. The

expression (Pre) is what van Kampen called a “pre-equation” which “is really a meaningless

string of symbols” until one specifies which stochastic calculus to use.[43]
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Itō and Stratonovich-Fisk (SF) calculus provide two distinct formalisms for defining stochas-

tic differential equations (SDEs). A famous peculiarity of Itō calculus is that the Chain Rule

from ordinary calculus must be replaced with Itō’s Lemma, which makes coordinate-free

formulas potentially confusing. The SF Chain Rule resembles ordinary calculus, but expec-

tation values of SF integrals can be much more difficult to calculate than their Itō counter-

parts. Appendix A briefly reviews the Itō-SF relationship. For thorough explanations, see

van Kampen, Sussmann, and their cited references.[43][44][45]

This chapter uses both calculi: a noise model is used to derive an SF SDE which is then

converted to an equivalent Itō SDE in order to more easily calculate expectation values. An

equation of the form (Pre) must be considered an SF SDE or else the possible states violate

the unitary-evolution assumption |rt| = |r0|.1 An equivalent Itō SDE can be found by using

the Wong-Zakai correction formula in Appendix A. The equivalent Itō SDE predicts the

same measurement probabilities, but it generally cannot be written in the form (Pre).

All models in this chapter follow the same algorithm with different choices of µ and Σ̂:

1. Define a heuristic pre-equation d
dtrt = −Bt × rt with Bt = µ(t, rt) + Σ̂(t, rt)

dW
dt .

2. “Multiply by dt” and proclaim the result to be a Stratonovich-Fisk SDE.

3. If µ and Σ̂ do not depend on rt, then solve the drunken master equation in Section

4.1 to find the model’s mean state r̄(t).

4. Use the numerical methods in Chapter 5 to simulate experiments.

The use of Gaussian white noise models here is motivated primarily by mathematical conve-

nience. A partial justification is given by the Central Limit Theorem: if many independent

errors occur very rapidly, then their sum tends to a Gaussian distribution.2 However, these

models might not be appropriate for all experiments. For example, there is evidence that

pink noise with a 1/f power spectral density affects superconducting qubits.[47]

Stochastic drunk models have many historical precedents. Kubo and Hashitsume derived

the NMR Bloch equation using very similar mathematics in 1970.[48] Fox used Gaussian

white noise models to find a quantum version of Boltzmann’s H-theorem and another Bloch-

equation derivation.[49][50][51] Gorini, Kossakowski, and Sudarshan developed similar mod-

els for noisy N -level quantum systems.[52][53] In the 1980’s, Tanimura and Kubo consid-

ered quantum systems with stochastic Gaussian-Markovian environments.[42] More recently,

Stockburger and Mak used stochastic Liouville-von Neumann equations to model dissipa-

tive quantum systems.[54][55] Tanimura’s 2005 review references “over half a century” of

work on stochastic quantum evolution.[56]

1For proof, use the SF Chain Rule from Appendix A or see e.g. [46].
2The errors need not be identically-distributed over time so long as the Lyapunov criterion is satisfied.
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4.1 The Drunken Master Equation

A drunken master equation is an ordinary differential equation (ODE) for the mean

state of a drunk model. A drunk model is linear if the mean field µ and volatility matrix

Σ̂ do not depend on rt. Each linear model has its own linear drunken master equation.

Solving a linear ODE is typically much easer than solving an SDE or a partial differential

equation for the true state’s probability density p(r, t)d3r.

Following van Kampen’s advice in [43], promote pre-equation (Pre) to a legitimate SDE by

“multiplying by dt” and choosing Stratonovich-Fisk stochastic calculus:

drt = −
(
µ(t, rt)dt+ Σ̂(t, rt) ◦ dW

)
× rt (4.1)

The mean field µ and volatility matrix Σ̂ are deterministic functions. The ◦ dW denotes

“use SF calculus,” while dW without the ◦ means “use Itō calculus.”

Some calculations are easier if the components of dW are written separately as dW 1, dW 2, dW 3.

(The superscripts are indices, not exponents.) Define three volatility vectors {νm(rt, t)},
each of which is the mth column of Σ̂(rt, t). For notational clarity, temporarily hide any t

and/or rt dependence of ν1,ν2,ν3 and µ. Equation (4.1) is then:

drt = −
(
µ× rt

)
dt−

3∑
m=1

(
νm × rt

)
◦ dWm (SF SDE)

The Wong-Zakai correction from Appendix A converts (SF SDE) into an Itō SDE:

drt = −
(
µ× rt

)
dt−

3∑
m=1

(
νm × rt

)
dWm +

1

2

3∑
m=1

D̂(νm × rt)(νm × rt) dt (Itō SDE)

Here D̂(νm× rt) denotes the a Jacobian matrix of first-partial derivatives of (νm× rt) with

respect to xt, yt, zt. This matrix is often easier to calculate if the cross-product is written as

a linear operator. For any vector a ∈ R3, let [a×] denote the matrix axÎ+ayĴ+azK̂:

[a×] ≡ axÎ + ayĴ + azK̂ =


0 −az ay

az 0 −ax

−ay ax 0


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Then [a×]r is the same vector as a× r. In this notation, (Itō SDE) is:

drt = −[µ×]rt dt−
3∑

m=1

[νm×]rt dW
m +

1

2

3∑
m=1

D̂
(

[νm×]rt

)
[νm×]rt dt

The extra terms in (Itō SDE) are a nuisance, but the martingale property of Itō integrals

greatly simplifies calclulation of the mean state r̄(t) ≡ E[rt]. For the present purposes, the

martingale property means the dWm terms in (Itō SDE) contribute nothing to E[rt].
3

For linear models, the diffusion terms {νm} have no rt dependence and D̂ simplifies:

drt = −[µ×]rt dt−
3∑

m=1

[νm×]rt dW
m +

1

2

3∑
m=1

[νm×]2rt dt (Linear Itō SDE)

Take the expectation value of both sides of (Linear Itō SDE) and erase the dWm terms:4

dE[rt] = E

[
−[µ×]rt +

1

2

3∑
m=1

[νm×]2rt

]
dt

Linearity of expectation values then implies:

dE[rt] =

[
−[µ×]E[rt] +

1

2

3∑
m=1

[νm×]2E[rt]

]
dt

In general, one does not simply assume E[f(rt)] = f(E[rt]), as that would violate Jensen’s

inequality unless f is affine. But for linear models, [µ×]rt and [νm×]2rt are linear functions

of rt and the assumption is valid. Using r̄(t) ≡ E[rt], the previous equation is:

d

dt
r̄ = −[µ×]̄r +

1

2

3∑
m=1

[νm×]2r̄ (Master)

(Master) is valid whether or not the mean field µ and volatility Σ̂ depend on time. But if

either depends on rt, then (Master) is not valid! For nonlinear models, D̂(νm× rt) is more

complicated and Jensen’s inequality ruins the last step in the derivation.

For practical applications, it may be useful to write (Master) in various other notations.

3Here E[rt] is short notation for E[rt
∣∣Ft], the expectation value of rt over its natural filtration Ft. For

thorough explanations of martingales and filtrations, see e.g. [57][58][59].
4Readers skeptical about this reckless use of infinitesimals dE[rt] and dt can find a more careful derivation

with the same conclusion for linear Itō SDEs in [59].
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For those who prefer traditional cross-product notation, the master equation is:

d

dt
r̄ = −µ× r̄ +

1

2

3∑
m=1

νm × νm × r̄

In terms of the infinitesimal covariance matrix Σ̂T Σ̂, it is:

d

dt
r̄ = −µ× r̄ +

1

2

(
Σ̂T Σ̂− Tr[Σ̂T Σ̂]1̂

)
r̄

In terms of rotation generators Î , Ĵ , K̂, it is:

d

dt
r̄ = −

[
µxÎ + µyĴ + µzK̂

]
r̄ +

1

2

3∑
m=1

[
ν1mÎ + ν2mĴ + ν3mK̂

]2
r̄

Here νnm is the nth component of the mth column of Σ̂. In component notation:

d

dt


x̄

ȳ

z̄

 =


0 µz −µy

−µz 0 µx

µy −µx 0



x̄

ȳ

z̄



+
1

2

3∑
m=1


−(ν2

2m + ν2
3m) ν1mν2m ν1mν3m

ν1mν2m −(ν2
3m + ν2

1m) ν2mν3m

ν1mν3m ν2mν3m −(ν2
1m + ν2

2m)



x̄

ȳ

z̄


It is often convenient to consolidate (Master) into one generator equation:

d

dt
r̄(t) = Ĝ(t)r̄(t) Ĝ(t) ≡ −[µ(t)×] +

1

2

3∑
m=1

[νm(t)×]2

If [Ĝ(t), Ĝ(s)] = 0 for all s, t > 0, then the solution is a matrix exponential:

r̄(t) = exp

[∫ t

0
Ĝ(s) ds

]
r̄(0)

Unfortunately, the assumption [Ĝ(t), Ĝ(s)] = 0 is often wrong unless µ and Σ̂ are both con-

stant in time.5 Numerical methods for solving (Master) are explained in Chapter 5.

Suppose a scientist does not precisely know the initial state r0 of a qubit, but he or she can

construct an initial mean state r̄(0) ≡ E[r0|F0]. If the initial state is known with certainty,

then the initial filtration F0 includes only a single element, and r̄(t) is an average over all

5The matrices Î , Ĵ , K̂ are generators of the rotation group SO(3), which is not commutative.
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possible trajectories of rt with starting point r0. If many initial states are possible, then

r̄(t) ≡ E[rt|Ft] is an average over all trajectories including all possible starting points.

For conceptual clarity, assume the qubit’s initial state is a discrete random variable: it

might be one of several possible pure states {ri0} with probabilities {pi}. Let r̄i(t) denote

the expectation value, given fixed initial condition ri0, of rt over all possible Hamiltonians.

This r̄i(t) is found by solving the master equation for initial condition ri0. The Law of Total

Probability requires the mean state at time t to be:

r̄(t) =
∑
i

P (ri0)E[r(t)|ri0] =
∑
i

pir̄i(t)

The master equation is a linear ODE, so each r̄i(t) is a linear transformation of r0i. Let T̂

denote the operator which sends initial state ri0 to its future mean state r̄i(t). Then

r̄(t) =
∑
i

pir̄i(t) =
∑
i

piT̂ri0 = T̂
∑
i

pir
i
0 = T̂ r̄(0)

Linear master equations make calculation of conditional mean states r̄i unnecessary. Given

a random initial state, one can calculate an initial mixed state r̄(0) =
∑
pir

i
0, then predict

future mean states r̄(t) by solving the master equation using r̄(0) as the initial condition.

(Like the master equation itself, this tactic is not valid for nonlinear models.)

4.2 The Second Law of Drunk Dynamics

Possible states of a drunk qubit tend to spread out as they wander randomly around the

Bloch sphere. Though each possible state remains pure, the mean state r̄(t) tends to drift

inward as t increases. For linear drunk models, this tendency can be made precise by a

theorem which is here called the Second Law of Drunk Dynamics:

For any linear drunk qubit model with a nonsingular volatility matrix, von

Neumann entropy of the mean state always increases.

The name is a somewhat facetious reference to the Second Law of Thermodynamics. There

are no Zeroth, First, or Third Laws of Drunk Dynamics, and the proof neither requires nor

uses any thermodynamic assumptions. In fact, it illustrates a disagreement between linear

drunk models and qubit thermodynamics: the mean state of a linear drunk model cannot

have a finite-temperature steady-state solution unless Σ̂ is singular. For nonsingular Σ̂, the

only possible steady-solution is r̄(∞)→ 0, which is the canonical thermal mixed state only

in the limits T → ±∞ or equivalently, β → 0.
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A geometric proof of the Second Law begins with Equation (Master):

d

dt
r̄ =

(
−[µ×] +

1

2

3∑
m=1

[νm×][νm×]

)
r̄

As before, νm is the mth column of the volatility matrix Σ̂, and any time dependence has

been hidden for notational clarity. Von Neumann entropy S(r̄) increases monotonically as

a mean state’s radius |̄r| decreases. With this in mind, use (Master) to find d
dt |̄r|

2:

d

dt
|̄r|2 = 2r̄ · d

dt
r̄ = −2r̄ · [µ×]̄r + r̄ ·

3∑
m=1

[νm×]2r̄ = 0 +

3∑
m=1

r̄ · [νm×]2r̄

The first term is zero because r̄ · (µ × r̄) = 0 regardless of what µ is. Using [a×][b×]c =

b(a · c)− c(a · b), the surviving term is:

d

dt
|̄r|2 =

3∑
m=1

(
r̄ · νm

)2 − |̄r|2|νm|2 (4.2)

For each nonzero column νm, let ϕm denote the smallest angle between νm and r̄. Use the

Euclidean dot-product rule (r̄ · νm)2 = |̄r|2|νm|2 cos2(ϕm):

d

dt
|̄r|2 =

3∑
m=1

|̄r|2|νm|2
[

cos2(ϕm)− 1
]

The mth term is zero if r̄ = 0 or νm = 0 or cos(ϕm) = ±1; otherwise it is negative. The

right side of (4.2) therefore cannot be positive, and it must be negative unless all three terms

are zero. If all three terms are zero, then at least one of the following must be true:

1. r̄ = 0.

2. All three {νm} have norm 0, which means Σ̂ is the zero matrix.

3. Each of the angles ϕ1, ϕ2, ϕ3 is either 0 or π radians.

Case 3 requires the {νm} to be linearly dependent. These vectors are columns of Σ̂, so they

cannot be linearly dependent unless Σ̂ is singular. A consequence of these results is:

Det[Σ̂] 6= 0 and r̄ 6= 0 ⇒ d

dt
|̄r|2 < 0

Stronger statements are also possible. If r̄ 6= 0 and Σ̂ 6= 0̂, then d
dt |̄r|

2 is strictly negative

unless r̄ is parallel (or antiparallel) to all nonzero columns of Σ̂. This can only occur if all

nonzero columns of Σ̂ are linearly dependent, which implies Rank[Σ̂] ≤ 1.
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The Second Law of Drunk Dynamics can also be written in terms of infinitesimal covariance

matrices. Let ννTm denote the outer product of νm with itself. Then (4.2) is:

d

dt
|̄r|2 =

∑
m

r̄T
[
ννTm − |νm|21̂

]
r̄ = r̄T

(
Σ̂T Σ̂− Tr[Σ̂T Σ̂]1̂

)
r̄ = |Σ̂r̄|2 − |̄r|2Tr[Σ̂T Σ̂]

If r̄ = 0 or Σ̂ = 0̂, then the radial velocity of r̄ is zero. If neither r̄ nor Σ̂ is zero, then

let {sm} denote the singular values of Σ̂, i.e. the square roots of the eigenvalues of the

positive-semidefinite matrix Σ̂T Σ̂. The magnitude |Σ̂r̄| is bounded from above by

|Σ̂r̄|2 ≤ |̄r|2 max[s2
m]

with equality only if r̄ is an eigenvector of Σ̂T Σ̂ with eigenvalue max[s2
m]. The Hilbert-

Schmidt inner product Tr[Σ̂T Σ̂] is the squared Frobenius norm of Σ̂:

Frob2(Σ̂) ≡ Tr[Σ̂T Σ̂] = s2
1 + s2

2 + s2
3

If Σ̂ has no more than one nonzero singular value, then Frob2(Σ̂) = max[s2
m]. Otherwise,

Frob2(Σ̂) > max[sm]2. The radial velocity of r̄ is thus bounded from above by:

d

dt
|̄r|2 ≤ |̄r|2

(
max[s2

m]− Frob2[Σ̂]
)
≤ 0

If Σ̂ 6= 0 and r̄ 6= 0, then r̄ must drift inward unless Σ̂ has exactly one nonzero singular

value s and r̄ is an eigenvector of Σ̂T Σ̂ with eigenvalue s2.

From a physical point of view, mean states gain von Neumann entropy until something

“turns off most of the noise” and Rank[Σ̂(t)] is reduced to 1 or 0. In these cases, the

mean state can approach a nonzero steady state.6 Otherwise r̄(t) continues towards the

maximum-entropy mixture 0 until we have no idea what state is actually present.

Equation (Master) fails for nonlinear models, so the results of this section are valid only

for linear drunk models in which µ and Σ̂ both have no rt dependence. The surplus energy

model in Section 4.6 was deliberately constructed as a nonlinear counterexample to the Sec-

ond Law. Numerical simulations of this model appear to show the mean state approaching

a finite-temperature thermal equilbrium state on the z-axis of the Bloch ball.

6The toy dephasing model in Section 4.3 is an example: it has a rank-1 volatility matrix, and the mean
state drifts inward until it reaches the z axis and “gets stuck” at a nonzero steady-state value.
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4.3 Example: Toy model of dephasing

This oversimplified model can be solved exactly, and the solution demonstrates many of the

essential properties of drunk models, SF-Itō conversion, and the Second Law. The solution

here uses Itō’s Lemma, the Box Calculus, and the SF Chain Rule from Appendix A. The

model begins with a heuristic expression for a stochastic B field in the z direction:

Bt =
(
0, 0, µ+ ν dWdt

)
where µ, ν are real constants. The corresponding pre-equation is d

dtrt = −Bt× rt. Promote

it to an SDE by “multiplying by dt” and choosing Stratonovich-Fisk calculus:

drt = −
(
Bt × rt

)
dt = −

(
0, 0, µ

)
× rt dt −

(
0, 0, ν

)
× rt ◦ dW

dxt

dyt

dzt

 =


0 µ 0

−µ 0 0

0 0 0



xt

yt

zt

 dt+


0 ν 0

−ν 0 0

0 0 0



xt

yt

zt

 ◦ dW (ToySF)

Geometric intuition suggests that rt rotates around the z-axis with a random angular fre-

quency. Consider a rotation whose angle φt solves the SDE dφt = µdt+ ν ◦ dW :xt
yt

 =

 cos(φt) sin(φt) 0

− sin(φt) cos(φt) 0


x0

y0

 φt ≡
∫ t

0
µdt+

∫ t

0
ν ◦ dW = µt+ νWt

If this is correct, then rt rotates by a random angle φt = µt+ νWt per time unit. To check

the proposed solution, write xt, yt as functions of φt and apply the SF Chain Rule:

dx(φt) = x′(φt) ◦ dφt =
[
− x0 sin(φt) + y0 cos(φt)

]
◦ dφt = yt

[
µdt+ ν ◦ dW

]
dy(φt) = y′(φt) ◦ dφt =

[
− x0 cos(φt)− y0 sin(φt)

]
◦ dφt = −xt

[
µdt+ ν ◦ dW

]
This agrees with (ToySF), which verifies the proposed solution. The Itō and SF solutions

for φt agree with each other, but the Itō and SF solutions to (ToySF) do not agree. To see

the distinction, apply Itō’s Lemma to x(φt) and y(φt):

dx(φt) = x′(φt)dφt + 1
2x
′′(φt)(dφt)

2

=
[
− x0 sin(φt) + y0 cos(φt)

]
dφt − 1

2

[
x0 cos(φt) + y0 sin(φt)

]
(dφt)

2

dy(φt) = x′(φt)dφt + 1
2x
′′(φt)(dφt)

2

=
[
− x0 cos(φt)− y0 sin(φt)

]
dφt + 1

2

[
x0 sin(φt)− y0 cos(φt)

]
(dφt)

2
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The Box Calculus rules dt2 → 0, dtdW → 0, dW 2 → dt imply (dφt)
2 → ν2dt. (See Appendix

A.) The functions x(φt) and y(φt) are solutions to the SF SDE (ToySF). According to Itō’s

Lemma, they are also solutions to the following Itō SDE:

dxt = ytdφt − 1
2ν

2xtdt = yt
(
µdt+ νdW

)
− 1

2ν
2xtdt

dyt = −xtdφt − 1
2ν

2ytdt = −xt
(
µdt+ νdW

)
− 1

2ν
2ytdt

dxt

dyt

dzt

 =


−1

2ν
2 µ 0

−µ −1
2ν

2 0

0 0 0



xt

yt

zt

 dt+


0 ν 0

−ν 0 0

0 0 0



xt

yt

zt

 dW (ToyItō)

The only differences between (ToySF) and (ToyItō) are the radial drift terms −1
2ν

2xtdt

and −1
2ν

2ytdt. At first glance, these terms appear to pull rt inside the sphere, but |rt| is

actually constant for all sample paths. For proof, define f(x, y, z) ≡ x2 + y2 + z2 and use

Itō’s Lemma to find df(xt, yt, zt):

df(r) = ∇f(r) · dr + 1
2dr

T [D̂2f(r)]dr

=

[
2xt 2yt

]dxt
dyt

+
1

2

[
dxt dyt

]2 0

0 2


dxt
dyt


= 2xtdxt + 2ytdyt + (dxt)

2 + (dyt)
2

The Box Calculus deletes dt2 and dWdt terms, and the surviving terms cancel:

df(xt, yt, zt) =
(
− ν2x2

t − ν2y2
t + ν2x2

t + ν2y2
t

)
dt = 0

If the radial drift terms were removed from (ToyItō), then |rt| would grow exponentially and

rt would spiral outward. This “centrifugal drift” is investigated in more detail in Appendix

A. For now, the essential point is: the physical assumption |rt| = |r0| requires (ToySF) to

be interpreted as an SF SDE. The Itō SDE (ToyItō) has the same solution, but it cannot

be written in the heuristic form d
dtrt = −Bt × rt.

(Master) produces a master equation for the mean state coordinates x̄(t), ȳ(t), z̄(t):

d
dt r̄ = −µK̂ r̄ + 1

2ν
2K̂2r̄

dx̄(t)

dȳ(t)

dz̄(t)

 =


−1

2ν
2 µ 0

−µ −1
2ν

2 0

0 0 0



x̄(t)

ȳ(t)

z̄(t)

 dt
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Erasing the dW terms in (ToyItō) and replacing xt, yt, zt with their expectation values

x̄(t), ȳ(t), z̄(t) produces the same master equation. The z component z̄(t) stays fixed. The

other coordinates’ expectation values are:x̄(t)

ȳ(t)

 = e−
1
2ν

2t

 cos(µt) sin(µt)

− sin(µt) cos(µt)


x0

y0



Figure 4.1: Monte Carlo simulation of toy dephasing model.

Mean state is estimated by averaging 1000 simulations with µ = (0, 0, 1), ν = 0.4,
t ∈ [0, 50], and 50 timesteps per blink. Initial state is r0 = 1√

2
(1, 0, 1).

Pauli coordinates x, y, z of mean state (solid lines) and a sample state (dotted lines).

Bloch-sphere trajectories of mean state (left) and a sample state (right).

Figure 4.1 shows numerical simulations of the toy dephasing model. On each trial, the

true state rt rotates around the z-axis with an erratic angular velocity. After a short time

ν2t� 1, rt is probably very close to where it should be. After a long time ν2t� 1, the true

angle φt becomes a total mystery and the mean state approaches r̄(∞) = (0, 0, z0).

The x̄ and ȳ coordinates of the mean state are the product of a sinusoidal oscillation and an

exponential decay. This behavior is very similar to the dephasing which commonly occurs

in qubit experiments. (Some examples are shown in Chapter 6.)



77

4.4 Example: Isotropic diffusion

In 1949, Yosida proved that stationary, isotropic Itō diffusion on a sphere is unique up to

choice of time unit and initial condition.[60]7 This process, sometimes called spherical Brow-

nian motion, is another simplified model of qubit dissipation. The pre-equation assumes a

constant mean field µ = 0 and constant isotropic volatility Σ̂ = ν1̂:

d

dt
rt = −Bt × rt = −ν

(
dW 1

t

dt
,
dW 2

t

dt
,
dW 3

t

dt

)
× rt

The superscripts dW 1
t , dW

2
t , dW

3
t are indices, not exponents. As before, “multiply both

sides by dt” and call the result an SF SDE:
dxt

dyt

dzt

 =


0 0 0

0 0 ν

0 −ν 0



xt

yt

zt

 ◦ dW 1 +


0 0 −ν

0 0 0

ν 0 0



xt

yt

zt

 ◦ dW 2 +


0 ν 0

−ν 0 0

0 0 0



xt

yt

zt

 ◦ dW 3

This equation can be written more concisely by using rotation generators Î , Ĵ , K̂.8

drt = −ν
[
Î ◦ dW 1 + Ĵ ◦ dW 2 + K̂ ◦ dW 3

]
rt (IsotropicSF)

The equivalent Itō SDE includes extra terms from the Wong-Zakai correction:

drt = −ν
[
ÎdW 1 + ĴdW 2 + K̂dW 3

]
rt +

1

2
ν2
[
Î2 + Ĵ2 + K̂2

]
rt dt (IsotropicItō)

The matrix Î2 + Ĵ2 + K̂2 simplifies to −21̂. The master equation is given by (Master), or

equivalently by erasing the dW terms in (IsotropicItō) and replacing rt with r̄(t):

d

dt
r̄ = −ν2r̄ ⇒ r̄(t) = r̄(0)e−ν

2t (IsotropicMaster)

Expectation values of all Pauli observables decay exponentially to r = 0.

Appendix A finds the same result for r̄(t) by a much more laborious method which is closer

to Yosida’s original work. The Fokker-Planck-Kolmogorov equation for the true state’s

probability density p(t, r)d3r turns out to be the heat equation on a sphere. If the initial

state is known to be some pure state r0, then p(0, r) has a Dirac δ distribution. This

is expanded as an infinite series of spherical harmonics, and the integral r̄(t) = E[rt] =∫
rp(t, r)d3r is calculated. When the dust settles, the result is r̄(t) = r0e

−ν2t.

7Yosida’s paper uses the term “3-sphere” to mean the surface |r| = 1 of a unit 3-ball |r| ≤ 1.
8Î , Ĵ , K̂ are not quaternions, though (IsotropicSF) and (IsotropicItō) do resemble quaternion equations.
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Figure 4.2: Monte Carlo simulation of isotropic model.

Mean state is estimated by averaging 1000 simulations with µ = 0, ν = 0.4, t ∈ [0, 25], and
100 timesteps per blink. Initial state is r0 = (0, 0, 1).

Pauli coordinates x, y, z of mean state (solid lines) and a sample state (dotted lines).

Bloch-sphere trajectories of two sample states.

Figure 4.2 shows numerical simulations of an isotropic model with the ground state as its

initial condition. The isotropic model has no mean field; it is “all noise and no signal.” This

model is not particularly realistic, but it can provide some useful geometric intuition.

On each trial, the true state wanders randomly around the Bloch sphere. After a short

time ν2t� 1, the true state is probably somewhere near its initial state. After a long time

ν2t� 1, every pure state is approximately equally probable and we have no idea what state

is actually present. The trajectory of the mean state r̄ is a straight line directly toward the

maximum-entropy mixed state 0. (It is not shown in Figure 4.2.) The z̄ coordinate decays

exponentially while the x̄ and ȳ coordinates remain approximately unchanged.
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4.5 Example: Linear Bloch model

The Bloch equation is an equation of motion for nuclear magnetization.

d

dt
mx = −γ

(
B×m

)
x
− mx

T2

d

dt
my = −γ

(
B×m

)
y
− my

T2

d

dt
mz = −γ

(
B×m

)
z
− mz −m∞

T1

Here m is the nuclear magnetization of some macroscopic chunk of material exposed to a

magnetic field B. (For notational clarity, time dependence of m and B is not shown.) The

constant γ is the material’s gyromagnetic ratio, and T1, T2 are phenomenological constants

called relaxation times. The constant m∞ is the steady-state magnetization in the z

direction. The notation (B ×m)x means the x component of B ×m, and similarly for y

and z. In generator notation, the Bloch equation is:

d

dt


mx(t)

my(t)

mz(t)

 =


−T−1

2 γBz(t) −γBy(t)

−γBz(t) −T−1
2 γBx(t)

γBy(t) −γBx(t) −T−1
1



mx(t)

my(t)

mz(t)

+


0

0

m∞/T1


The time derivative of m(t) is a linear function of m(t) plus a constant affine term. The

master equation for the model in this chapter has exactly the same form as the Bloch

equation except for the affine term. The heuristic Bt and pre-equation are:

Bt = µ(t) + Σ̂
dW

dt
=


µx(t)

µy(t)

µz(t)

+
d

dt


ν1 0 0

0 ν1 0

0 0 νz



dW 1

dW 2

dW 3

 d

dt
rt = −Bt × rt

The mean field µ is an arbitrary function of time.9 The volatility matrix Σ̂ is diagonal and

constant but not quite isotropic. As usual, “multiply the pre-equation by dt” and consider

the result to be an SF SDE. In terms of rotation generators Î , Ĵ , K̂, it is:

drt = −
[(
µx(t)Î + µy(t)Ĵ + µz(t)K̂

)
dt+ ν1Î ◦ dW 1 + ν1Ĵ ◦ dW 2 + νzK̂ ◦ dW 3

]
rt

9µ is assumed to behave well enough that a unique solution to the ordinary LvN equation exists.
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Using the (Master) formula, the resulting master equation is:

d

dt
r̄(t) =

[
−µx(t)Î − µy(t)Ĵ − µz(t)K̂ +

1

2

(
ν2

1 Î
2 + ν2

1 Ĵ
2 + ν2

z K̂
2
)]

r̄(t)

In column-vector notation, the master equation is:

d

dt


x̄(t)

ȳ(t)

z̄(t)

 =


−1

2(ν2
1 + ν2

z ) µz(t) −µy(t)

−µz(t) −1
2(ν2

1 + ν2
z ) µx(t)

µy(t) −µx(t) −ν2
1



x̄(t)

ȳ(t)

z̄(t)


The following substitutions transform this into the Bloch equation (minus its affine term):

m(t)↔ r̄(t) γB(t)↔ µ(t) T−1
1 ↔ ν2

1 T−1
2 ↔ 1

2(ν2
1 + ν2

z )

The toy dephasing model in section 4.3 predicts that mean states spiral inward exponentially

with decay rate 1
2ν

2
z . With this in mind, define a dephasing time T−1

φ ≡ 1
2ν

2
z . This

definition and the Bloch-equation substitutions lead to the following relation:

1

T2
=

1

2T1
+

1

Tφ

The same equation has been found by superconducting qubit researchers using different

methods.[47][61][62] T1, T2, Tφ are variously called relaxation, dephasing, and/or coherence

times by different authors. Positivity of ν2
1 and ν2

2 also implies T2 ≤ Tφ and T2 ≤ 2T1.

The linear Bloch model provides no instructions for determining ν2
1 and ν2

z a priori. As

Tanimura and Kubo cautioned, they are “merely a model appropriate for the problem rather

than something to be derived.” Derivation of these parameters from physical considerations

requires a more specific model of a qubit’s environment. However, experimental values of

T1 and T2 can be used to define the implied volatilities of a qubit:

ν̃1 ≡
1√
T1

ν̃z ≡
√

2

T2
− ν̃2

1 =

√
2T1 − T2

T1T2

Given empirical values for T1, T2, the implied volatilities ν̃1, ν̃z are what the parameters ν1

and νz “should be” if the linear Bloch model is accurate.10

10This idea is borrowed from a quantitative finance technique. Market prices of options are used to derive
the volatility of the underlying asset, assuming the Black-Scholes-Merton model is correct. This implied
volatility is then compared to empirical observations of the asset’s volatility.[63]
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Figure 4.3: Monte Carlo simulation of Bloch model.

Mean state is estimated by averaging 1000 simulations with µ = (0, 0, 1), ν1 = 0.2,
νz = 0.5, t ∈ [0, 60], and 50 timesteps per blink. Initial state is r0 = 1√

2
(1, 0, 1).

Pauli coordinates x, y, z of mean state (solid lines) and a sample state (dotted lines).

Bloch-sphere trajectories of mean state (left) and a sample state (right).

Figure 4.3 shows numerical simulations of a linear Bloch model qubit with mean field

µ = (0, 0, 1) and initial condition (1, 0, 1)/
√

2. If there were no noise, the state would

simply rotate about the z-axis. The sample state shown in Figure 4.3 is typical: it roughly

rotates about the z-axis, but its z-coordinate “wobbles” and the rate of rotation is unsteady.

Plotted as a 3D trajectory, the mean state spirals toward 0. Note that the mean z̄ coordinate

decays more slowly than the mean x̄ and ȳ coordinates. In this example, T1 and T2 are:

T1 =
1

ν2
1

= 25 T2 =
2

ν2
1 + ν2

z

≈ 6.90

One benefit of the linear Bloch model model is its extreme generality. Every uncontrolled

interaction between a generic qubit and the rest of the universe is represented by a few real

numbers. (The toy dephasing model and isotropic model are special cases.) One weakness is

the model’s inability to predict a thermal-equilibrium mean state as t→∞. The volatility

matrix Σ̂ is not singular unless ν1 or νz is zero, so the Second Law of Drunk Dynamics does

not allow a nonzero steady-state z-coordinate.
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4.6 Example: Nonlinear surplus energy model

The nonlinear model in this section is not restricted by the Second Law. The drunken

master equation is not valid for nonlinear models, but the numerical methods in Chapter

5 can still be used to run simulations. These simulations appear to show that a nonzero

steady-state z-coordinate can indeed exist for nonlinear models.

From a physical point of view, linear models assume a qubit’s Hamiltonian Bt is statistically

independent of its true state rt. Consider an analogous situation in which a swimmer uses

a random model to predict the heights of waves she must swim through. If she is in the

middle of an ocean, she might reasonably assume that the distribution of wave heights

does not depend on her location. Linear drunk models assume an “ocean hypothesis” that

uncontrolled environmental interactions do not depend on the qubit’s state.

An extreme version of the analogy reveals another assumption. Suppose the swimmer’s

environment is a small bathtub. Waves now “remember” prior states in the sense that

the swimmer’s previous actions significantly affect the distribution of future wave heights.

None of the noise models in this paper remember prior states. For nonlinear models, Bt

may depend on where rt is now, but it does not depend on how rt got there.11

The surplus energy model begins with the usual heuristic pre-equation:

d

dt
rt = −

(
µ dt+ Σ̂(rt)

dWt

dt

)
× rt

For computational simplicity, the mean field µ is assumed constant. The volatility matrix

Σ̂(rt) does not explicitly depend on time, but it is a function of the true state rt:

µ =


0

0

µ

 Σ̂(rt) =


ν1E(rt) 0 0

0 ν1E(rt) 0

0 0 νz

 E(rt) ≡
z∞ − zt

2|rt|

Here µ, ν1, νz, and z∞ ∈ [−1, 1] are real constants and E(rt) is the surplus energy func-

tion. For linear models, the Second Law requires mean states to drift inward until something

“turns off part of the noise” and Rank[Σ̂] ≤ 1. The surplus energy function does exactly

that: whenever zt = z∞, the volatility matrix has rank 1. This may appear to be an ad hoc

assumption, and as far as the author knows, it is. It is presented here only to suggest that

a nonzero steady-state solution may be possible for nonlinear drunk models.

11More precisely: Bt is a Markovian process with respect to the natural filtration Ft of rt.
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The expected energy of a qubit with deterministic Hamiltonian B = (0, 0, µ) is:

〈H〉 = Tr[Ĥρ̂] = −1
2

(
B · r

)
= −1

2µzt

If z∞ is the steady-state z coordinate, then the steady-state expected energy E∞ is:

E∞ = −1
2µz∞

The surplus energy function is (〈H〉 − E∞) divided by the qubit’s energy gap:

E(rt) ≡
〈H〉 − E∞
E1 − E0

=
−1

2µzt + 1
2µz∞

µ
=
z∞ − zt

2
=
z∞ − zt

2|rt|

E(rt) can be negative, but this has no significance because multiplying a Wiener process by

−1 produces another Wiener process.[57][58]

The physical assumption that true states are pure requires |rt| = 1 at all times, so the factor

of |rt| is not strictly necessary. It is included in the definition only to ensure that E(rt) can

be easily written in spherical coordinates. If θt and θ∞ denote the Bloch latitudes of states

with z-coordinates zt and z∞, then the surplus energy function is:

E(rt) =
z∞ − zt

2|rt|
=

1

2

[
cos(θ∞)− cos(θt)

]
From Section 2.5, the canonical density matrix for a qubit with energy gap ε is:

ρ̄thermal =
1

2

1 + tanh(βε) 0

0 1− tanh(βε)

 ⇔ r̄thermal =
(

0, 0, tanh(βε)
)

β ≡ 1

kT

For a canonical mixed state, the equilibrium mean-state z̄ coordinate is z∞ = tanh(βε).

The master equation from Section 4.1 cannot be trusted for nonlinear models, so finding

the mean state may require solving an SDE. The ordinary deterministic LvN equation can

be difficult to solve exactly if B is not constant in time, and replacing B with a stochastic

process only increases the difficulty. Fortunately, the low dimensionality of the problem

means Monte Carlo simulations can be performed without special hardware. (The numerical

methods used are explained in detail in Chapter 5.)

Figure 4.4 shows a simulation of the surplus energy model and the von Neumann entropy

of the estimated mean state. For this example, the mean field is a constant µ = (0, 0, 1)

and z∞ = 0.6. At first, the mean state spirals inward toward 0. Flagrantly disregarding

the Second Law, the entropy then slowly declines during a long “cooling off” period as the

mean state moves upward along the z-axis toward (0, 0, z∞).
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Figure 4.4: Monte Carlo simulation of surplus energy model.

Mean state is estimated by averaging 1000 simulations with µ = (0, 0, 1), ν1 = νz = 1,
t ∈ [0, 500], z∞ = 0.6, and 20 timesteps per blink. Initial state is r0 = (1, 0, 0).

Pauli coordinates x, y, z of mean state (solid lines) and a sample state (dotted lines).

Bloch-sphere trajectories of mean state (left) and a sample state (right).

Time series for Von Neumann entropy of mean state (bits).

The sample state in Figure 4.4 may give some hint of why the mean state slowly drifted

north toward z∞. This state spent much of its time “stuck” near the latitude θ∞ where

E(rt) = 0. It did eventually break free, but it never entered the area of the Bloch sphere

north of θ∞. This behavior was typical of sample states for the surplus energy model. No

states were seen crossing the equilibrium latitude θ∞.



85

5 NUMERICAL METHODS

This chapter explains exponential numerical methods for ordinary and stochastic generator

equations. In this thesis, an ordinary generator equation of dimension N is any first-

order ordinary differential equation of the form

ṙ = Ĝr

where r is an unknown 1×N (real or complex) column-vector-valued function of time, ṙ

is its time derivative, and Ĝ is a known N×N (real or complex) matrix-valued function

of r and time. The name is borrowed from Lie group theory: Ĝ is the generator of time

evolution for the system in question. Generator equations are partitioned here into three

categories, each of which is typically solved using different tactics.

• For constant generator equations, Ĝ is constant.

• For linear generator equations, Ĝ(t) may depend on time but not on r.

• For nonlinear generator equations, Ĝ(r, t) depends on r and possibly also t.

The Schrödinger equation for anN -level system is a complex linear generator equation.

d

dt

∣∣Ψ(t)
〉

= Ĝ(t)
∣∣Ψ(t)

〉
Ĝ(t) = − ı

~
Ĥ(t)

The LvN equation for Pauli coordinates of a qubit is a real linear generator equation.

ṙ(t) = Ĝ(t)r(t) Ĝ(t) = −[B(t)×] = −
[
Bx(t)Î +By(t)Ĵ +Bz(t)K̂

]
Solutions to linear generator equations are linear transformations of an initial state:

Ĝ(t) does not depend on r ⇒ r(t) = T̂ (t, t0)r(t0)

where the time evolution operator T̂ (t, t0) is a matrix-valued function of t and t0. If

T̂ (t, t0) can be found, then it can be re-used to find solutions with different initial conditions.

(This is an example of the superposition principle for linear ODEs. For nonlinear generator

equations, it may be necessary to run a new simulation for each initial condition.)
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The density-matrix form of the Liouville-von Neumann equation can also be solved using

generator-equation methods. Denote an initial density matrix by ρ̄(t0). Construct an

orthonormal basis {|ψn〉} of eigenvectors of ρ̄(t0), and let {λn} denote the corresponding

eigenvalues. Then ρ̄(t0) equals a convex combination of N pure states {|ψn〉〈ψn|}:

ρ̄(t0) = λ1|ψ1〉〈ψ1|+ · · ·+ λN |ψN 〉〈ψN |

Find T̂ (t, t0) for the Schrödinger equation. This operator sends each initial state |ψn〉 to its

new value T̂ (t, t0)|ψn〉. Hiding the (t, t0) dependence of T̂ for notational clarity,

ρ̄(t) = λ1T̂ |ψ1〉〈ψ1|T̂ † + · · ·+ λN T̂ |ψN 〉〈ψN |T̂ † = T̂ ρ̂(t0)T̂ †

For constant generator equations, the time evolution operator is a matrix exponential:

Ĝ is constant ⇒ T̂ (t, t0) = exp
[
(t− t0)Ĝ

]
The exp symbol denotes the matrix exponential function:

exp
[
M̂
]
≡
∞∑
l=0

1

l!
M̂ l = 1̂ + M̂ +

1

2
M̂2 +

1

6
M̂3 + · · ·+ 1

l!
M̂ l + · · ·

This method can be generalized to commutative linear generator equations.

[Ĝ(s), Ĝ(t)] = 0 for all s, t ⇒ T̂ (t, t0) = exp

[∫ t

t0

Ĝ(s) ds

]

For noncommutative generator equations, approximations can be found using a Dyson,

Magnus, or Fer series. Section 5.1 lists a few linear Magnus methods and the related expo-

nential midpoint method (ExpMid) for nonlinear generator equations. These are especially

useful for quantum simulations because they generate time evolution operators which are

nearly unitary to very high precision.1 Section 5.2 reviews matrix exponentials.

Section 5.3 briefly introduces strong solvers for stochastic differential equations. The strong

solver used in this thesis combines the Castell-Gaines strategy in Subsection 5.3.1 with the

ExpMid method and MATLAB’s expm function for matrix exponentials. This method is

relatively simple to implement and very good at keeping pure states pure. For example, all

simulations in this thesis conserved Bloch-sphere radii to better than ±10−14.

1Fer methods share this advantage but require more matrix exponentials per timestep.
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5.1 Magnus methods

Magnus methods use the Magnus series to approximate solutions of generator equations.

A time interval [t0, tJ ] is partitioned into J timesteps {[tj , tj + h]}, each of size h. (For

simplicity, adaptive timestep-size algorithms are not used in this thesis.) The goal is then

to find approximate short-term solutions in the form of a matrix exponential:

r(t+ h) ≈ exp
[
Ω̂(r(t), t)

]
r(t)

The first three terms of the Magnus series for Ω̂(t) are:[64]

Ω̂(t) =

∫ t+h

t
Ĝ(s) ds+

1

2

∫ t+h

t

∫ s

t

[
Ĝ(s), Ĝ(r)

]
drds

+
1

6

∫ t+h

t

∫ s

t

∫ r

t

[
Ĝ(s),

[
Ĝ(r), Ĝ(q)

]]
+
[
Ĝ(q),

[
Ĝ(r), Ĝ(s)

]]
dqdrds+ · · ·

Here q, r, s are dummy variables for time. For noncommutative generator equations, the

series rapidly becomes a complicated mess.[65] Fortunately, it is possible to design an inte-

grator with O(h6) global error using only 3 evalutations of Ĝ(t) m per timestep.[66]

A sufficient condition for the Magnus series to converge on a single timestep is:[67]∫ tj+h

tj

∣∣∣∣Ĝ(s)
∣∣∣∣ ds < π

More precisely, “converges” means “converges in matrix norm” for some choice of matrix

norm. For many practical purposes, the Frobenius norm is a reasonable choice.

Frob(M̂) ≡
√

Tr[M̂ †M̂ ]

With this norm, ||M̂ ||2 is the sum of the absolute square of all matrix elements. The

spectral norm, also known as the induced Euclidean norm or largest singular value, is

arguably more relevant physically but also slower to calculate numerically.

Spec(M̂) ≡
√
λmax(M̂ †M̂)

Here λmax(M̂ †M̂) is magnitude of the largest-magnitude eigenvalue of M̂ †M̂ . If Ĝ(t) has

only imaginary eigenvalues and ||Ĝ(t)|| is defined using the spectral norm, then sampling

faster than the Nyquist rate of the solution is sufficient for convergence.2

2As noted in [67], series convergence is neither necessary nor sufficient for accurate simulations. Magnus
methods sometimes produce accurate results even when the Nyquist condition is flagrantly violated. This
“supersonic integration” is an active topic of research.[68][69]
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Magnus methods are geometric integrators which preserve Lie group symmetries of the

solution. In the context of the qubit LvN equation, these integrators keep states on the Bloch

sphere. Specifically, linear combinations of rotation generators Î , Ĵ , K̂ form a representation

of the Lie algebra so(3), which is closed under commutation:

[Î , Ĵ ] = K̂ [Ĵ , K̂] = Î [K̂, Î] = Ĵ

For the LvN equation, Ĝ(t) is necessarily an element of so(3). Every term in the Magnus

series is also an element of so(3). Suppose Ωl(t, t0) is calculated by summing of the first l

terms in the series, then ignoring the rest. The approximate time-evolution operator

T̂l(t, t0) = exp [Ωl(t, t0)]

is then an element of SO(3), the Lie group of 3D rotations. If the matrix exponential is

calculated precisely enough, then even a low-accuracy Magnus method will evolve r(t) by

rotations and ensure that |r(t)| = |r(0)|. By a similar argument, Magnus integrators for

state vectors of an N -level quantum system conserve total probability:[70]

〈Ψ(t)|Ψ(t)〉 = 〈Ψ(0)|Ψ(0)〉 = 1

For many quantum simulations, |Ψ(t)〉 follows a complicated path even if the behavior of

the Hamiltonian Ĥ(t) is relatively simple. (The Rabi flopping in Chapter 6 is a famous

example.) Magnus methods often perform very well in this type of situation.[70][67]

These methods can also benefit greatly from parallelization. For linear systems, the calcu-

lations on each timestep do not require the results of previous timesteps. If J processors

are available, then in principle all J timesteps can be calculated simultaneously.

A major weakness of Magnus methods is that matrix exponentials suffer from a “curse of

dimensionality.” For a single qubit, the matrices involved are 2×2 complex or 3×3 real.

For an Q-qubit system, a state vector has 2Q components. Simulating a 16-qubit system

by directly applying the methods in this chapter to |Ψ〉 would require exponentiating a

65536×65536 complex matrix on each timestep. For a Monte Carlo simulation, the entire

procedure would need to be repeated for each sample path. Even if symmetries are used to

reduce the number of parameters, a very large number of numerical operations are typically

needed for multi-qubit simulations. (As Feynman pointed out, any method for simulating

high-dimensional quantum systems must overcome some version of this “curse.”[71])
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5.1.1 ExpEuler and ExpMid methods

The O(h) exponential Euler method approximates Ĝ as constant on each step. If r(tj)

is the state at time tj , then the next state is calculated like so:

r(tj + h) ≈ exp
[
hĜ
(
r(tj), tj

)]
r(tj)

For linear systems, the single-step time evolution operator Ŝj is:

Ŝj ≡ exp
[
hĜ
(
tj
)]

r(tj + h) ≈ Ŝjr(tj)

These {Ŝj}matrices can be multiplied to find an approximate time-evolution operator:

T̂ (tJ , t0) = ŜJ−1ŜJ−2 · · · Ŝ1Ŝ0 = exp
[
hĜ(tJ−1)

]
· · · exp

[
hĜ(t0)

]
The linear ExpEuler method is a 1-term Magnus expansion with left-end quadrature:∫ tj+h

tj

Ĝ(s) ds ≈ hĜ(tj)

If all Ĝ(tj) matrices commute, then the exponential rule eAeB = eA+B is valid. In the limit

h→ 0, J →∞ with hJ = (tJ − t0) fixed, ExpEuler becomes a (left) Riemann sum:

T̂ (tJ , t0) = lim
h→0

exp

J−1∑
j=0

hĜ(t0 + jh)

 = exp

[∫ tJ

t0

Ĝ(s) ds

]

The formula eA+B = eAeB is not valid if AB 6= BA. For non-commuting matrices, it must

be replaced with a Baker-Campbell-Hausdorff formula:[72][73][74][65]

exp[Â] · exp[B̂] = exp
[
Â+ B̂ +

1

2
[Â, B̂] +

1

12

([
Â, [Â, B̂]

]
−
[
B̂, [Â, B̂]

])
+ · · ·

]
where the dots indicate an infinite series of nested commutators.3

The O(h2) exponential midpoint method (ExpMid), also known as the exponential

Heun’s method, is more accurate than ExpEuler and only slightly more complicated.[76][77]4

As the name suggests, it is an exponential version of the midpoint method. The generator

3For finite-dimensional quantum systems, a closed-form expression for the infinite series can be found.[75]
4Midpoint quadrature introduces error of at most 1

24
h3||∂2

tG(t∗)||, where ||∂2
tG(t∗)|| is the largest ma-

trix spectral norm of ∂2
t Ĝ(t) during the timestep. However, under certain mild assumptions about the

commutators [Ĝ(t), Ĝ(s)], Magnus methods tend to suppress quadrature errors.[67][70]
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Ĝ is approximated as constant and sampled at the midpoint of each step:

r(tj + h) ≈ exp
[
hĜ
(
r(t]j), t

]
j

)]
r(tj) t]j ≡ tj + 1

2h

Musicians may recognize the pun: the midpoint time t]j is one half-step to the right of tj .

For linear generator equations, this method is no more costly than the Euler method:

Ŝj ≈ exp
[
hĜ
(
t]j
)]

T̂ (tJ , t0) ≈ ŜJ−1ŜJ−2 · · · Ŝ1Ŝ0

For nonlinear generator equations, the midpoint state r(t]j) is not known and must be

estimated. ExpMid uses ExpEuler to estimate the midpoint state:

t]j ≡ tj + 1
2h r]j ≡ exp

[
1
2hĜ

(
r(tj), tj

)]
r(tj) r(tj + h) ≈ exp

[
hĜ
(
r]j , t

]
j

)]
r(tj)

The nonlinear ExpMid method requires two matrix exponentials per timestep rather than

one. Both linear and nonlinear versions have global error O(h2).

5.1.2 Advanced Magnus methods for linear ODEs

A few higher-order integrators for linear generator equations are below. Each method sam-

ples Ĝ(t) at multiple subsample times, also called collocation points, per timestep.

O(h4) with modified Gauss-Legendre quadrature:[76]

cL = 1
2 −

√
3

6 cR = 1
2 +

√
3

6

ĜL = Ĝ(tj + cLh) ĜR = Ĝ(tj + cRh)

Ωj = 1
2h
(
ĜL + ĜR

)
−
√

3
12 h2

[
ĜL, ĜR

]
Ŝj = exp

[
Ω̂j

]
O(h4) with modified Simpson’s Rule quadrature:[76]

ĜL = Ĝ(tj) ĜM = Ĝ(tj + 1
2h) ĜR = Ĝ(tj + h)

Ω̂j = 1
6h
(
ĜL + 4ĜM + ĜR

)
− 1

12h2
[
ĜL, ĜR

]
Ŝj = exp

[
Ω̂j

]
This method appears to calculate Ĝ(t) three times per step rather than two. However,

the right-end sample ĜR can be re-used on the next timestep. Only two function calls are

needed on each timestep (except the first step). Because Simpson’s Rule uses evenly-spaced

subsample times, it may be easier to use with adaptive-timestep algorithms.
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O(h6) with modified Gauss-Legendre quadrature:[66]

cL = 1
2 −

√
15

10 cR = 1
2 +

√
15

10

ÂL = hĜ(tj + cLh) B̂1 = hĜ(tj + 1
2h) ÂR = hĜ(tj + cRh)

B̂2 =
√

15
3

(
ÂR − ÂL

)
B̂3 = 10

3

(
ÂL − 2B̂1 + ÂR

)
Ĉ1 =

[
B̂1, B̂2

]
D̂ = 2B̂3 + Ĉ1

Ĉ2 =
[
B̂1, D̂

]
Ê = −20B̂1 − B̂3 + Ĉ1 F̂ = B̂2 − 1

60 Ĉ2

Ĉ3 =
[
Ê, F̂

]
Ω̂j = B̂1 + 1

12B̂3 + 1
240 Ĉ3 Ŝj = exp

[
Ω̂j

]
Higher-order Magnus methods for nonlinear generator equations are more complicated,

require multiple matrix exponentials per timestep, and are not used in this thesis. For a

detailed overview, see e.g. [77] and [76].

5.2 Matrix exponentials

The matrix exponential of an N×N square matrix M̂ is:

exp
[
M̂
]
≡
∞∑
l=0

1

l!
M̂ l = 1̂ + M̂ +

1

2
M̂2 +

1

6
M̂3 + · · ·+ 1

l!
M̂ l + · · ·

Here 1̂ indicates the N ×N identity matrix and M̂0 ≡ 1̂ by definition. Some, but not all,

properties of the function ex remain valid for matrix exponentials:

(
eM̂
)−1

= e−M̂ e(a+b)M̂ = eaM̂ebM̂ for all a, b ∈ C

The familiar rule ex+y = exey does not work unless x and y commute:

eM̂+N̂ = eM̂eN̂ if [M̂, N̂ ] = 0

For matrices that commute, the following property also holds:

eN̂M̂e−N̂ = M̂ if [M̂, N̂ ] = 0

Some additional properties not shared with the function ex are:

(
eM̂ )† = eM̂

† (
eM̂ )T = eM̂

T
Det[eM̂ ] = eTr[M̂ ] eN̂M̂N̂−1

= N̂eM̂ N̂−1
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Every matrix commutes with its own exponential:

[M̂, eaM̂ ] = [M̂, 1̂] + a[M̂, M̂ ] +
a2

2!
[M̂, M̂2] +

a3

3!
[M̂, M̂3] + · · · = 0

If Ĥ is self-adjoint and t is real, then Û = exp[−ıtĤ] is unitary:

Û † =
(
e−ıtĤ

)†
= eıtĤ

†
= eıtĤ =

(
e−ıtĤ

)−1
= Û−1

If Â is real antisymmetric and t is real, then R̂ = exp[tÂ] is orthogonal:

R̂T =
(
etÂ
)T

= etÂ
T

= e−tÂ = R̂−1

ExpMid and Magnus methods require a reliable method for numerical matrix exponenti-

ation. This is a non-trivial task and has been the subject of several decades of research.

Three of the “least dubious” methods, according to Moler and van Loan, are:[78]

1. Eigenvalue exponentiation

2. Taylor series with scaling and squaring

3. Padé approximants with scaling and squaring

Eigenvalue exponentiation, which requires a separate algorithm for matrix diagonal-

ization, is reasonably fast and stable for normal matrices. A matrix M̂ is normal if it

commutes with its adjoint: [M̂, M̂ †] = 0. Normal matrices can be diagonalized by a unitary

transformation: M̂ = ÛD̂Û−1, where Û is unitary and D̂ is diagonal.

M̂ = ÛD̂Û−1 ⇒ eM̂ = ÛeD̂Û−1

If Û is unitary, then Û−1 = Û † can be calculated quickly because Û−1 = Û †. Exponentiating

D̂ is easy: exponentiate the diagonal elements and ignore the rest.

Scaling and squaring is a trick to ensure quick convergence and prevent catastrophic

cancellation errors when summing a series. A natural number q is chosen such that ||M̂ || <
2q. The exponential of a rescaled matrix 2−qM̂ is then calculated and squared q times.

exp[M̂ ] =
(

exp
[

1
2q M̂

])2q

The simulations in this thesis use MATLAB’s expm function, which uses Padé approximants

with scaling and squaring. A truncated Taylor series with scaling and squaring is easier to

code but typically slower by a factor between 1 and 2.[78] In testing, both of these methods

were faster than diagonalization for matrices with spectral norm ||M̂ || < 1.
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5.3 Strong solvers for SDEs

A strong solver attempts to generate accurate approximations of sample paths of a

stochastic differential equation. A weak solver attempts to accurately approximate the

moments (mean, variance, skewness, kurtosis, etc.) of the solution.[79]

Plots of approximate sample paths can provide useful intuition about the geometric and

qualitative properties of a system. They can also be used for Monte Carlo simulations of

various properties of the system. For example, the estimated mean states plotted in Chapter

4 were found by simulating many sample paths and averaging them.

Unfortunately, simulating SDE sample paths is not as easy as simply inserting random

numbers into an ODE solver. Consider a first-order Itō SDE of the form:

drt = g(rt, t) dt +

M∑
m=1

ηm(rt, t) dW
m

The superscripts dWm are indices, not exponents. The function g is the drift field and the

{ηm} are diffusion fields. As before, break the time interval [t0, tJ ] into J equally-sized

timesteps {[tj , tj + h]}. If the approximate strong solution depends only on samples of Wt

taken at the sample times {tj}, then its global error order is strictly limited. If the diffusion

fields commute for all rt and t, then O(h) is the best possible order; else it is O(
√

h).[80]

These error bounds cannot be avoided by adjusting g to find an equivalent SF SDE.5

The O(
√

h) Euler-Maruyama method (EM) is one of the simplest strong solvers. Like

the Euler method, it provides a useful introduction even though its accuracy and stability

are unimpressive. In the small-timestep limit, EM converges to Itō solutions of an SDE.

Let ∆ denote a (pseudo)random real number with a standard normal distribution. Then
√

h∆ is a (pseudo)random real number with the same distribution as (Wt+h−Wt). On each

timestep, generate M independent samples {∆m}. Replace each Wiener increment dWm

with
√

h∆m. The new value of rt+h is approximated like so:

rt+h ≈ rt + h g(rt, t) +
√

h
M∑
m=1

ηm(rt, t)∆m

EM corresponds closely to Itō’s definition of
∫
dW : it evaluates the drift and diffusion fields

at the beginning of each timestep, just as Itō intended. For some applications, this is an

advantage. But drunk model SDEs are typically easier to write in Stratonovich-Fisk form,

which makes the Itō convergence of the EM method a nuisance. The EM method is also not

a geometric integrator, and it is quite bad at keeping pure states on the Bloch sphere.

5Higher-order solvers require samples of iterated stochastic integrals, also called Lévy areas.
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5.3.1 The Castell-Gaines strategy

The Castell-Gaines strategy (CG) is a class of strong SDE solvers introduced in [81].

The name strategy rather than method is used here because CG is can be implemented

using any O(h2) ODE method. This is advantageous for drunk models because it can be

used with exponential integrators which keep pure states pure.

CG is designed for Stratonovich-Fisk SDEs of the form:

drt = g(t, rt) dt +
M∑
m=1

ηm(t, rt) ◦ dWm

On each timestep, the strategy is:

1. Define a temporary time coordinate s ∈ [0, 1] such that t = tj + hs.

2. As with the EM method, generate M independent, standard-normally-distributed

pseudorandom samples {∆m}.

3. Construct the following ordinary differential equation:

d

ds
r̃(s) = h g

(
r̃(s), s

)
+
√

h
M∑
m=1

ηm
(
r̃(s), s

)
∆m (CG ODE)

4. Set r̃(0) = rtj . Use an O(h2) ODE solver to approximate r̃(1). Set rtj+1 = r̃(1).

For noncommutative diffusion fields, Castell-Gaines methods have the same O(
√

h) strong

global error as EM. However, they are generally more accurate than EM, and they converge

to SF solutions instead of Itō solutions.

Castell and Gaines originally used Heun’s method as their O(h2) ODE solver. The simula-

tions in this thesis use ExpMid as the ODE solver. Calculating matrix exponentials costs

extra time, but the return on this investment is that simulated states stay on the Bloch

sphere to almost machine precision. For drunk qubits, (CG ODE) is:

d

ds
r̃ = −h[µ×]̃r−

√
h

3∑
m=1

∆m[νm×]̃r (Drunk CG)

where {νm} are columns of the volatility matrix Σ̂. (For notational clarity, any explicit s or

r̃(s) dependence is not shown.) On each timestep, generate a column ∆ whose components

are standard-normal pseudorandom samples {∆m}. Then (Drunk CG) is:

d

ds
r̃ = −B̃× r̃ = −

(
B̃xÎ + B̃yĴ + B̃zK̂

)
r̃ B̃ ≡ hµ +

√
hΣ̂∆
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For linear models, the linear ExpMid method can be used to solve (CG ODE):

t] ≡ tj + 1
2h B̃] ≡ hµ(t]) +

√
hΣ̂(t])∆ rtj+h ≈ exp

[
−B̃]

xÎ − B̃]
yĴ − B̃]

zK̂
]
rtj

For nonlinear models, B̃ depends on r̃, so its value at the midpoint time t] is unknown.

The nonlinear ExpMid method uses ExpEuler to estimate r̃ and B̃ at the midpoint:

B̃ ≡ hµ(rtj , tj) +
√

hΣ̂(rtj , tj)∆ r] ≡ exp
[
−B̃xÎ − B̃yĴ − B̃zK̂

]
rtj

B̃] ≡ hµ(r], t]) +
√

hΣ̂(r], t])∆ rtj+h ≈ exp
[
−B̃]

xÎ − B̃]
yĴ − B̃]

zK̂
]

rtj

The CG + ExpMid method corresponds fairly closely to the physical assumptions of a drunk

model. On each timestep, the computer replaces each ◦dWm with a pseudorandom number

∆m. This simulated noise is added to the mean B field, and the appropriate rotation on

the Bloch sphere is calculated. Even if numerical errors are severe, each single-step time

evolution operator is the exponential of a 3×3 real antisymmetric matrix. Consequently,

the new state rt+h is always an orthogonal transformation of the previous state rt.
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6 SIMULATIONS VS. EXPERIMENTS

This chapter illustrates how drunk models can be used to simulate two experimental tests of

qubit designs: Rabi oscillations and Ramsey fringes. These tests are used here as examples

because similar experiments have been performed on a variety of qubit designs.

Section 6.1 is review and can be skipped or skimmed by readers familiar with NMR-type

qubit controls. For ease of visualization and compatibility with modern experimental con-

ventions, the relevant formulas are rewritten in terms of Pauli coordinates from Chapter

1. Sections 6.2 and 6.3 show numerical simulations of Rabi and Ramsey tests. Section 6.4

shows excerpts from four real qubit experiments for comparison.

Two types of simulations were performed using the MATLAB code in Appendix C:

• The master-equation method uses the DrunkenMaster script to numerically integrate

the drunken master equation.

• The Monte Carlo method uses the StochasticLinear script to generate many pseu-

dorandom possible states which are averaged to produce an approximate mean state.

These scripts are designed to be easily modified for different experiments and/or different

drunk models. (Nonlinear models require the StochasticNonlinear script and cannot

use the DrunkenMaster script.) The Monte Carlo method is more time-consuming because

each simulation generates many sample paths of an SDE. The master-equation method only

solves a single linear ODE, which is typically much faster and more accurate.

All simulations in this chapter use the linear Bloch model from Section 4.5 with various

different volatilities. The master equation for this model is the Bloch equation with steady-

state solution 0 and decay times given by:

T1 =
1

ν2
1

T2 =
2

ν2
1 + ν2

z

Tφ =
2

ν2
z

T1 is typically greater than Tφ in practice, at least for superconducting qubits.[3] For this

reason, most of the simulations in this chapter set νz > ν1

√
2.

T1 > Tφ ⇔ 1

ν2
1

>
2

ν2
z

⇔ 2ν2
1 < ν2

z
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Rabi oscillations and Ramsey fringes are named for Rabi’s work on nuclear magnetic res-

onance and Ramsey’s related separated oscillatory fields method.[82][83] Rabi and Ramsey

were awarded Nobel Prizes for their research in 1944 and 1989, respectively. Qubit tests

based on Rabi cycles and Ramsey fringes later became an essential part of experiments such

as [84] and [85] for which Haroche and Wineland were awarded the 2012 Nobel Prize.1

On each trial of a Rabi or Ramsey experiment, a qubit’s Hamiltonian is manipulated in a

specfic way, the qubit is allowed to evolve for some time tj , and an energy measurement is

performed. For each tj , many trials are repeated and the number of excited-energy results

is used to infer P (excited) = 1
2(1− z). Quantum theory predicts approximately-sinusoidal

oscillations of z and classical mechanics does not. In this way, Rabi and Ramsey experiments

provide tests of the “quantumness” of a prototype qubit.

In real experiments, it is extremely common for the inferred z-coordinate to oscillate sinu-

soidally with an exponentially-decaying amplitude. Real qubits appear to decay smoothly

from quantum to classical behavior with some characteristic decay times which are used to

estimate T1 and T2 for that particular qubit. Section 6.4 shows several examples.

Similar damped-oscillator patterns of measurement probabilities are predicted by the drunken

master equation. According to drunk models, the true state of a qubit never leaves the Bloch

sphere, but noise causes the radius of the model’s mean state r̄(t) to decay exponentially. If

a Rabi or Ramsey test is performed with many not-quite-identical trials, then the qubit’s in-

ferred z coordinate will be close to the mean-state z̄ coordinate with high probability.

6.1 Pulse-controlled qubits

The theoretical description of a qubit in Chapter 1 is deliberately generic: a pure qubit

state is a point on a sphere, and transformations between pure states are rotations. Real

experiments require physical methods for producing these rotations. In practice, these

methods are often more elaborate than simply choosing an axis and an angle.

Let Ĥ0 denote the usual traceless reference Hamiltonian:

Ĥ0 = −1

2
(E1 − E0)σ̂z = −~

2

ω0 0

0 −ω0


As usual, ω0 = (E1 − E0)/~ is the qubit’s natural angular frequency. Suppose a qubit’s

1The cited experiments used the more complicated Jaynes-Cummings model in which a qubit is coupled
to quantized electromagnetic field modes in a cavity.
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Hamiltonian can be written as the sum of Ĥ0 and an oscillating σ̂x term:

Ĥ(t) = −1

2
~ω0σ̂z +A~ cos(ω1t)σ̂x = −~

2

 ω0 2A cos(ω1t)

2A cos(ω1t) −ω0

 (PCH)

In this thesis, this operator is called the pulse control Hamiltonian (PCH). In terms of

Pauli coordinates and standardized spin-1
2 parameters, (PCH) is:

B(t) =
[
2A cos(ω1t) , 0 , ω0

]T
The Schrödinger equation for a pulse-controlled qubit is:

d

dt
|Ψ〉 = − ı

~
Ĥ|Ψ〉 ⇔

α̇
β̇

 =
ı

2

 ω0 2A cos(ω1t)

2A cos(ω1t) −ω0


α
β


For clarity, time dependence of Ĥ, |Ψ〉, α, β is not shown. Unless otherwise noted, this

chapter assumes ω1 and ω0 are positive. In many experiments, A is small and ω1 is near

resonance. More precisely, define the detuning ∆ ≡ ω1 − ω0 and assume:

|∆| � |A| � |ω0|

If an experimenter has sufficiently precise control of A and ω1, then it is possible to rotate

any initial pure state to a point arbitrarily close to any other pure state.

6.1.1 The rotating-wave approximation

In the interaction picture, new coordinates a, b are chosen by “rewinding” the time

evolution generated by the reference Hamiltonian:

T̂0 = exp

[
− ıt
~
Ĥ0

]
=

e1
2 ıω0t 0

0 e−
1
2 ıω0t


a
b

 ≡ T̂−1
0

α
β

 =

αe−1
2 ıω0t

βe
1
2 ıω0t


Time derivatives of these new interaction-picture coordinates a, b are:ȧ

ḃ

 =

α̇e−1
2 ıω0t − 1

2 ıω0αe
−1

2 ıω0t

β̇e
1
2 ıω0t + 1

2 ıω0βe
1
2 ıω0t


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Use the Schrödinger equation and (PCH) to find α̇ and β̇. Terms due to the reference

Hamiltonian Ĥ0 cancel, and what remains is:ȧ
ḃ

 = ıA

β cos(ω1t)e
−1

2 ıω0t

α cos(ω1t)e
1
2 ıω0t

 = ıA

b cos(ω1t)e
−ıω0t

a cos(ω1t)e
ıω0t

 =
ıA

2

b(eı(ω1−ω0)t + eı(−ω1−ω0)t
)

a
(
eı(ω1+ω0)t + eı(−ω1+ω0)t

)


The rotating-wave approximation (RWA) discards the “fast” (ω1 +ω0) terms.[86]

ȧ
ḃ

 ≈ ıA

2

 beı∆t

ae−ı∆t

 (RWA)

This 2-dimensional 1st-order ODE can be rewritten as a 1-dimensional 2nd-order ODE

which can be solved exactly. Take the time derivative of ḃ to find:

b̈ = 1
2 ıA
(
ȧe−ı∆t − ı∆aeı∆t

)
= −1

4A
2b− ı∆ḃ

This is a linear homogenous 2nd-order ODE, so look for solutions of the form eλt.

λ2 = −1
4A

2 − ı∆λ λ = 1
2

(
−ı∆±

√
−∆2 −A2

)
Define the Rabi flopping frequency Ω:

Ω ≡
√

∆2 +A2 =
√

(ω1 − ω0)2 +A2

The general solution for b(t) is a linear combination of two oscillating modes:

b(t) = C1e
−1

2 ı(∆+Ω)t + C2e
−1

2 ı(∆−Ω)t

The constants C1, C2 are determined by initial conditions. The excitation probability

||b(t)||2 “flops” up and down at the Rabi flopping frequency Ω:

||b(t)||2 = ||C1||2 + ||C2||2 + C∗1C2e
ıΩt + C∗2C1e

−ıΩt

If the qubit is initially in its ground state, then a(0) = 1 (neglecting overall phase factors)

and b(0) = 0. These initial conditions require b(0) = C1 +C2 = 0. The initial ḃ(0) is:

ḃ(0) = −1
2 ı
[
(∆ + Ω)C1 + (∆− Ω)C2

]
= −1

2 ı
[
∆(C1 + C2) + Ω(C1 − C2)

]
= 1

2 ıΩ(C2 − C1)
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ḃ(0) = 1
2 ıAa(0) = 1

2 ıA ⇔ 1
2 ıΩ(C2 − C1) = 1

2 ıA ⇔ C2 =
A

2Ω
= −C1

The exact solution for b(t) with initial conditions a(0) = 1, b(0) = 0 is:

b(t) =
A

2Ω

[
− e−

1
2 ı(∆+Ω)t + e−

1
2 ı(∆−Ω)t

]
=
ıA

Ω
e−

1
2 ı∆t sin(1

2Ωt)

The probability of detecting the excited energy E1 at time t is:

||β(t)||2 = ||b(t)||2 =
A2

Ω2
sin2

(
1
2Ωt
)

=
A2

2Ω2

[
1− cos(Ωt)

]
In the limit of perfect resonance, ω1 = ω0. In this case, ∆ = 0, Ω = |A|, and

||β(t)||2 = 1
2

[
1− cos(Ωt)

]
⇔ z(t) = cos(Ωt)

In this way, a resonant pulse can be used to set the excitation probability of a qubit. For

example, a pulse of duration tπ ≡ π/Ω sends the ground state to the excited state. Applying

the pulse for twice as long produces one full Rabi cycle |0〉 → |1〉 → |0〉.

6.1.2 A geometric view: π pulses and spiral operators

Pauli coordinates provide some geometric intuition about the RWA. The reference Hamil-

tonian is B0 = (0, 0, ω0) and the LvN equation is ṙ = −B × r. When no pulse is applied,

the qubit’s state r rotates about the z axis with angular velocity −ω0.

r(t) = T̂0(t)r(0) ⇔


x

y

z

 =


cos(ω0t) sin(ω0t) 0

− sin(ω0t) cos(ω0t) 0

0 0 1



x0

y0

z0


Define interaction-picture coordinates q = (qx, qy, qz) by “rewinding” this rotation:

q(t) ≡ T̂−1
0 (t)r(t)

qx

qy

qz

 ≡


cos(ω0t) − sin(ω0t) 0

sin(ω0t) cos(ω0t) 0

0 0 1



x

y

z

 =


x cos(ω0t)− y sin(ω0t)

x sin(ω0t) + y cos(ω0t)

z


This q is what the qubit’s Bloch vector would look like from the point of view of an observer

co-rotating with the qubit’s natural angular frequency. Note that qz is just the original z
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coordinate. The time derivatives of the other two q coordinates are:q̇x
q̇y

 =

ẋ cos(ω0t)− ω0x sin(ω0t)− ẏ sin(ω0t)− ω0y cos(ω0t)

ẋ sin(ω0t) + ω0x cos(ω0t) + ẏ cos(ω0t)− ω0y sin(ω0t)


When a pulse is applied, the Hamiltonian is (PCH):

B(t) =
[
2A cos(ω1t) , 0 , ω0

]T
Time evolution is given by the LvN equation ṙ = −B× r:

ṙ = −
[
2A cos(ω1t)Î + ω0K̂

]
r


ẋ

ẏ

ż

 =


0 ω0 0

−ω0 0 2A cos(ω1t)

0 −2A cos(ω1t) 0



x

y

z


Substituting ẋ, ẏ, ż into the equation for q̇ and cancelling terms,

q̇x

q̇y

q̇z

 = 2A


−z cos(ω1t) sin(ω0t)

z cos(ω1t) cos(ω0t)

−y cos(ω1t)

 = 2A


−qz cos(ω1t) sin(ω0t)

qz cos(ω1t) cos(ω0t)

qx cos(ω1t) sin(ω0t)− qy cos(ω1t) cos(ω0t)


To apply the RWA, ignore any “fast” (ω0 + ω1) terms:

cos(ω1t) sin(ω0t) =
1

4ı

(
eı(ω0+ω1)t − e−ı(ω0+ω1)t − eı∆t + e−ı∆t

)
≈ −1

2
sin(∆t)

cos(ω1t) cos(ω0t) =
1

4

(
eı(ω0+ω1)t + e−ı(ω0+ω1)t + eı∆t + e−ı∆t

)
≈ 1

2
cos(∆t)

The RWA in interaction-picture q coordinates is then:


q̇x

q̇y

q̇z

 ≈ A


0 0 sin(∆t)

0 0 cos(∆t)

− sin(∆t) − cos(∆t) 0



qx

qy

qz

 (RWA)

In terms of rotation generators, (RWA) can be written more compactly:

q̇ = −A
[

cos(∆t)Î − sin(∆t)Ĵ
]
q
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If |∆| � |A|, then the short-term behavior of q is rotation about the x axis with angular

velocity ≈ −A. On longer timescales, the axis of rotation falls out of sync with the qx axis

and slowly rotates about the equator.

In the limit of perfect resonance ∆→ 0, (RWA) is a constant generator equation. Its exact

solution is a matrix exponential which rotates q about the qx axis:

q(t) = R̂(t)q(0) R̂(t) = exp
[
−AtÎ

]
=


1 0 0

0 cos(At) sin(At)

0 − sin(At) cos(At)


From a non-rotating point of view, the qx axis itself is rotating around the equator with

angular velocity ω0. To calculate r(t), transform back to non-rotating coordinates:

r(t) = T̂ (t)q(t) = T̂ (t)R̂(t)q(0) = T̂ (t)R̂(t)r(0)

Time evolution of r(t) is given by the spiral operator Ŝ(t) ≡ T̂ (t)R̂(t).

Ŝ(t) =


cos(ω0t) sin(ω0t) cos(At) sin(ω0t) sin(At)

− sin(ω0t) cos(ω0t) cos(At) cos(ω0t) sin(At)

0 − sin(At) cos(At)



If a weak resonant pulse is applied for a time t to a qubit state r0, then the spiral operator

calculates the new state r(t) = Ŝ(t)r0 according to the RWA.

A pi pulse is a pulse with duration π/|A|, weak amplitude |A| � ω0, and negligible

detuning |ω1 − ω0| � |A|. The spiral operator for a π pulse is:

Ŝπ =


cos(ω0tπ) − sin(ω0tπ) 0

− sin(ω0tπ) − cos(ω0tπ) 0

0 0 −1

 tπ ≡
π

|A|

This operator sends a state at the North pole (0, 0, 1) to the South pole (0, 0,−1). Figure

6.1 shows an example π pulse and an illustration from Hahn’s 1953 paper on the spin

echo technique.[87] For this example, the initial state is r0 = (0, 0, 1). The pulse-control

Hamiltonian is used with A = 1
20 , ω1 = ω0 = 1. The simulation is run for t ∈ [0, 20π].
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Figure 6.1: Simulated π pulse and illustration of a π/2 pulse.
Left: Results of DrunkenMaster with zero volatility, pulse amplitude |A| = 1

20 , and
perfectly-resonant pulse frequency ω1 = ω0 = 1. Right: Hahn’s illustration from [87].

It is sometimes convenient to also define π/2 pulses and 2π pulses with durations:

tπ
2
≡ π

2|A|
tπ ≡

π

|A|
t2π ≡

2π

|A|

For pulses whose duration is not an integer multiple of tπ, the spiral operator may depend

on the sign of A. For a π/2 pulse, it is:

Ŝπ
2

=


cos(1

2ω0tπ) 0 ± sin(1
2ω0tπ)

− sin(1
2ω0tπ) 0 ± cos(1

2ω0tπ)

0 ∓1 0

 ± =

 + if A > 0

− if A < 0

Figure 6.2 shows one full Rabi cycle (a 2π pulse) with A = 1
20 and ω1 = ω0 = 1. Small

wobbles in the z coordinate are caused by the “fast” terms neglected in the RWA.

Figure 6.3 shows detuned Rabi cycles with ω1 = 0.999ω0. Interaction-picture coordinates

q are shown in a rotating frame. Schrödinger-picture coordinates r are shown in a non-

rotating frame. The RWA was used to calculate q but not r in this figure.

Figures 6.1, 6.2, and 6.3 were made by the DrunkenMaster script, which does not rely on

the RWA. To simulate an ideal pulse-controlled qubit with DrunkenMaster, set the volatility

matrix Sigma to zero and the mean field Mu to µ(t) = B(t) = [2A cos(ω1t), 0, ω0]T .
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Figure 6.2: Full Rabi cycle with A = 1
20 , ω1 = ω0 = 1, and t ∈ [0, 40π].

Small “wobbles” in the z-coordinate are neglected by the rotating-wave approximation.

Figure 6.3: Detuned Rabi cycles with A = 1
20 , ω1 = 0.999, ω0 = 1, and t ∈ [0, 1000].

Left: Interaction-picture q(t) shown in rotating frame and calculated using RWA.
Right: Schrödinger-picture r(t) shown in non-rotating frame and calculated without RWA.

6.2 Simulated Rabi cycles

Pulse control in a noisy environment requires engineering compromises. Strong pulses make

the RWA less accurate. Weak pulses need more time to accomplish the same change in

latitude, which can give a qubit enough time to wander badly off course.

A Rabi cycle experiment tests how long a pulse can be applied before a qubit spirals

out of control. An experimenter chooses J pulse durations {t1, . . . , tJ}. For each tj , the

following steps are repeated many times:

1. Prepare the qubit in its ground state.

2. Apply a resonant pulse.

3. At time tj , measure the energy of the qubit.
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After many such trials, the number of excited-energy results is used to infer P (excited) =
1
2 [1− z̄(tj)]. The inferred z̄(tj) values are then plotted as a time series.

For an ideal qubit, Rabi cycles can continue indefinitely. For real qubits, Rabi cycle ampli-

tude typically decays exponentially or approximately so. Attempting to maintain a large

Rabi amplitude for as long as possible has become a common test of qubit stability.

Figure 6.4: Simulated π pulses using StochasticLinear.
Left: Ideal π pulse. Right: 10 trials with T1 = 10000, T2 = 4000.

Figure 6.4 shows 10 trials in which a π pulse is applied to a good-but-imperfect qubit in its

ground state. For an ideal qubit, the trajectory is a half Rabi cycle. The imperfect trials

become visibly non-identical as they spiral toward the South pole. As t increases, small

errors accumulate as each true state wanders away from where it “should” be.

Figure 6.5 shows the mean z̄(t) coordinate calculated by solving the master equation using

the DrunkenMaster script. In each case, z̄(t) follows the damped-oscillator pattern typical

of real experiments. For reference, e−t/T1 and e−t/T2 are also plotted.

Figure 6.6 shows Monte Carlo simulations of the mean z̄(t) coordinate using StochasticLinear.

Each mean state is an average of 250 simulations with 100 timesteps per blink. One full

Rabi cycle of one sample state from each simulation is also shown.

All simulations in this section use the linear Bloch model from Chapter 4. The mean field

µ is given by the pulse control Hamiltonian with A = 1
20 and ω1 = ω0 = 1:

µ(t) = B(t) =
[
0.1 cos(t), 0, 1

]T
Each simulation is color-coded by its volatilities ν1, νz. Table 6.1 shows the volatilities and

their corresponding T1, T2 times calculated from the linear Bloch model.
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Table 6.1: Color-coded volatilities for simulations.

ν1 νz T1 T2

blue .03162 .03162 1000 1000

green .03162 .06324 1000 400

red .05 .1 400 160

Figure 6.5: Rabi cycle master equation simulations.

Above: Mean z̄(t) coordinate found using DrunkenMaster.
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Figure 6.6: Rabi cycle Monte Carlo simulations.

Above: Average of 250 zt coordinates produced by StochasticLinear.

Below: Sample state for one full Rabi cycle t ∈ [0, 40π].
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6.3 Simulated Ramsey fringes

Ramsey fringe experiments are often used to test how long a qubit can remain in a half-

excited state without misbehaving. An experimenter chooses J waiting times {τ1, . . . , τJ}.
For each τj , the following steps are repeated many times:2

1. Prepare the qubit in its ground state.

2. Apply a π/2 pulse to send the qubit’s state to the equator.

3. Turn off the pulse and wait τj .

4. Apply another π/2 pulse, then measure the energy of the qubit.

After many such trials, the number of excited-energy results is used to infer P (excited) =
1
2 [1− z̄(τj + tπ)]. The inferred z̄(τj + tπ) values are then plotted as a time series.

The result of the second pulse depends on where the state is at the end of its waiting period.

An ideal qubit endlessly circles around the equator with angular frequency ω0. Real qubits

tend to wander off course. Averaged over many trials, the mean state r̄(t) tends to spiral

inward, much like the toy dephasing model in Chapter 4.

Suppose pulses are positive and perfectly resonant: A > 0 and ω1 = ω0 ≡ ω. For an ideal

qubit, the first π/2 pulse will send the ground state to:

r(tπ/2) = Ŝr(0) =


cos(ωtπ/2) 0 sin(ωtπ/2)

− sin(ωtπ/2) 0 cos(ωtπ/2)

0 −1 0




0

0

1

 =


sin(ωtπ/2)

cos(ωtπ/2)

0


After a waiting time τ , the state will be:

r(τ + tπ/2) = T̂0(τ)Ŝr(0) =


cos(ωτ) sin(ωτ) 0

− sin(ωτ) cos(ωτ) 0

0 0 1




sin(ωtπ/2)

cos(ωtπ/2)

0

 =


sin(ω[τ + tπ/2])

cos(ω[τ + tπ/2])

0


Applying another π/2 pulse sends the state to:

r(τ + 2tπ/2) = ŜT̂0(τ)Ŝr(0) =


cos(ωtπ/2) sin(ω[τ + tπ/2])

− sin(ωtπ/2) sin(ω[τ + tπ/2])

− cos(ω[τ + tπ/2])


2The algorithm shown here is one of several closely-related Ramsey fringe experiments.
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The probability of an excited energy result depends sinusoidally on τ :

P (excited) = 1
2

[
1− z(τ + 2tπ/2)

]
= 1

2 + 1
2 cos

(
ω[τ + tπ/2]

)
Ramsey fringes are oscillations in the plot of P (excited) vs. τ . As with Rabi cycles,

observed Ramsey fringes tend to decay exponentially as τ increases. During the waiting

period, the mean state spirals exponentially inward with decay rate 1/T2. For this reason,

Ramsey fringe experiments are often used to estimate a qubit’s T2 time.

All simulations in this section use the linear Bloch model from Chapter 4. Positive, perfectly-

resonant pulses with A = 1
20 and ω1 = ω0 = 1 are used. The π/2 pulse time is then

tπ/2 = π/(2A) = 10π. The mean field µ(t) = B(t) is a piecewise function:

first pulse t ∈ [0 , 10π] B(t) =
[
0.1 cos(t), 0, 1

]T
waiting period t ∈ (10π , 10π + τ) B(t) =

[
0, 0, 1

]T
second pulse t ∈ [10π + τ , 20π + τ ] B(t) =

[
0.1 cos(t− [τ + 10π]), 0, 1

]T
Figure 6.7 shows ideal Ramsey trials calculated by DrunkenMaster with zero volatility. With

these parameters, the final z coordinate for an ideal trial is − cos(τ+10π) = − cos(τ).

Figure 6.7: Ideal Ramsey trials with τ = 20π, 20.5π, and 21π.
On each trial, a π/2 pulse sends the state’s Bloch vector from the North pole to the

equator. It orbits for a time τ , then another π/2 pulse is applied.

Figure 6.8 shows the mean state and a sample state from a Monte Carlo simulation of a

Ramsey trial with waiting time τ = 21π. Volatilities were set such that T1 = 400 and

T2 = 160. The mean state was estimated by averaging 1000 sample states simulated by

StochasticLinear. The sample state is typical of simulation results: at first, the qubit ap-

proximately obeys its orders and spirals toward the equator. It then orbits unsteadily until

the second pulse sends it back North, where it misses the pole by a sizeable margin.

The mean state reaches the equator mostly on course, then steadily dephases inward. The

second pulse succeeds in producing an upward spiral, but the mean state’s final z̄ coordinate

is limited by the many sample states which failed to reach the North pole.
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Figure 6.8: Monte Carlo simulation of Ramsey trials with τ = 21π, T1 = 400, T2 = 160.

Left: One sample state. Right: Mean state estimated by averaging 1000 sample states.

x, y, z coordinates of mean state (solid) and one sample state (dotted).

The script RamseyMaster simulates a full Ramsey experiment with multiple τ values. For

each waiting time τj , it calculates the mean state by numerically integrating the drunken

master equation. The final z̄ coordinate is saved, and another simulation is run for the next

τj+1. Final z̄ coordinates are plotted versus τ . Figure 6.9 shows the results for T1 = 400,

T2 = 160. For reference, exp(−tm/T1) and exp(−tm/T2) are also shown. (Here tm ≡ τ + tπ

is the total time between the start of a trial and the energy measurement at the end.)

Figure 6.9: RamseyMaster simulation with T1 = 400, T2 = 160.
Vertical axis is final mean z̄ coordinate. Horizontal axis is waiting time τ .
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6.4 Experimental data

Many experiments with various qubit designs have been published in peer-reviewed litera-

ture since the early 2000’s. As a sample, this section shows excerpts from four papers.

Figure 6.10 is from [88]. The qubit in this experiment is literally a spin-1
2 particle: |0〉

and |1〉 are nuclear spin eigenstates of a phosphorus-31 electron donor in silicon. Radio-

frequency pulses are used for qubit control. Readout (i.e. an up-or-down measurement) is

performed using electron spin resonance on the donor electron of the 31P atom. The top

two plots in Figure 6.10 are Rabi tests. Each shows spin-flip probability as a function of

pulse duration tp. The labels D0, D+ indicate whether the electron donor was neutral or

ionized. The bottom two plots are Ramsey tests for the neutral-donor D0 and ionized-donor

D+ states. Spin-flip probability is shown as a function of waiting time τ .

Figure 6.11 is from [89]. Four phase qubits are used, each of which is a SQUID (Su-

perconducting QUantum Interference Device) circuit at mK temperature. Pulse control is

accomplished by applying microwave-frequency current to the circuit. The |0〉 and |1〉 states

are metastable: they are long-lived scattering resonances, not energy eigenstates. Readout

is performed by measuring escape rate, which is much different for |0〉 and |1〉. Plots in

Figure 6.11 show escape rate Γ as a function of pulse duration t for a Rabi test.

Figure 6.12 is from [9]. Neutral rubidium atoms are prepared using laser cooling and held

in optical dipole traps. Hyperfine atomic states are used as |0〉 and |1〉. Pulse control is

accomplished using a Raman laser system, and readout is performed by applying radiation

pressure with a laser. The readout laser is adjusted such that the |1〉 state is forced out of

the trap but the |0〉 state is not. The top plot in Figure 6.12 shows P (ground) as a function

of pulse duration for a Rabi test. The bottom plot is a Ramsey-like test in which control

pulses are detuned so that in a rotating frame, the qubit’s Bloch vector drifts out of sync

with the pulse. P (ground) is shown as a function of waiting time τ .

Figure 6.13 is from [90]. Three Josephson junctions in a loop are used as a flux qubit. The

|0〉 state represents a persistent current in one direction, and |1〉 represents current in the

opposite direction. Pulse control is accomplished by applying microwave-frequency current

to the circuit. For readout, a SQUID is attached in such a way that applying a pulse to the

SQUID causes it to switch to zero or nonzero voltage depending on the excitation probability

of the qubit. The top plots in Figure 6.13 show switching probability as a function of pulse

duration for Rabi tests with three different amplitudes. The top-right plot shows observed

Rabi frequency as a function of amplitude. The Ramsey intereference plot shows switching

probability as a function of waiting time τ . A spin-echo test is also shown.3

3For brevity, spin-echo tests are omitted from this thesis. See [87] for Hahn’s original explanation.
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Figure 6.10: Rabi cycles and Ramsey fringes for 2 nuclear spin qubits.

Above: Rabi cycles. Below: Ramsey fringes.

J. J. Pla, et al. “High-fidelity readout and control of a nuclear spin qubit in silicon,”
Nature, vol. 496, Apr 2013.[88]
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Figure 6.11: Rabi cycles for 4 phase qubits.

H. Paik, et al. “Decoherence in dc SQUID phase qubits,” Phys. Rev. B, vol. 77, 2008.[89]
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Figure 6.12: Rabi cycles and Ramsey fringes for an atomic qubit.

Above: Rabi cycles. Below: Ramsey fringes.

A. Lengwenus, et al. “Coherent manipulation of atomic qubits in optical micropotentials,”
Appl. Phys. B, vol. 86, 2007.[9]
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Figure 6.13: Rabi cycles, Ramsey fringes, and spin-echo test for a flux qubit.

Above: Rabi cycles. Below: Ramsey fringes and spin-echo test.

I. Chiorescu, et al. “Coherent quantum dynamics of a superconducting flux qubit,”
Science, vol. 299, Mar 2003.[90]
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7 CONCLUSIONS

Drunk models provide a quantitative formalism for the effects of non-identical trials during

qubit experiments. According to these models, estimated states inferred from experimental

data can gain von Neumann entropy even if the true state of the system is always pure.

Many of the practical conclusions of linear drunk models are already common knowledge.1

The following claims are neither novel nor particularly controversial:

• Any qubit can be represented by a fictional spin-1
2 in a magnetic field.

• The Schrödinger equation requires pure states to stay pure.

• Qubit expectation values very often decay exponentially in a way which (at least

approximately) resembles the Bloch equation for nuclear magnetic resonance.

• Finding evidence of quantum coherence requires precise experimental controls.

• No experiment can maintain precise control of an unobserved qubit indefinitely.

The main distinctions between drunk models and other descriptions of decoherence are:

1. No environmental model. The Hilbert space of possible state vectors is 2-dimensional.

Every interaction between a qubit and the rest of the universe is represented as random

noise in a 2×2 Hamiltonian operator.

2. Possible nonlinearity. The mean state of a nonlinear drunk model need not evolve

according to a linear master equation.

3. Pure states only. Drunk models assume quantum states are always pure. Mixed

states are used only as statistical estimators for unknown true states.

The first distinction (no environmental model) may have practical value for the reasons

mentioned by Tanimura and Kubo at the beginning of Chapter 4. A generic description

of the environment as “random noise” can provide a unified formalism for distinct qubit

designs and decoherence processes. Models which do not attempt to describe a qubit’s

environment in detail are often mathematically simpler and/or easier to simulate.

1For a review of what is meant by “common knowledge,” see e.g. [20][47][62][91][5][92] and their cited
references. Some of these focus on specific qubit designs, but each provides an overview of recent research.
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The second distinction (possible nonlinearity) provides a method for describing experiments

in which the estimated state’s evolution does not obey the Bloch equation. Solving a

nonlinear stochastic differential equation can be extremely difficult, but methods in Chapter

5 and its cited references can be used for Monte Carlo simulations.

The third distinction (pure states only) may be of some theoretical importance. Drunk

models predict that pure states appear to transform irreversibly into mixed states, but this

illusion disappears if one distinguishes between true states, mean states, and estimated

states. True states evolve by reversible unitary transformations without exception. Mean

and estimated states can gain entropy from accumulation of small errors in control of a

system, even if no permanent physical changes occur to the system itself.

7.1 A loophole in Loschmidt’s paradox

Time evolution of unobserved systems according to the Schrödinger (or Liouville-von Neu-

mann) equation is deterministic, unitary, reversible, and cannot alter von Neumann entropy.

This property is not compatible with the maxim that physical systems tend irreversibly to-

ward disorder. One of many versions of the maxim was given by Eddington:

The law that entropy always increases holds, I think, the supreme position

among the laws of Nature... If your theory is found to be against the second

law of thermodynamics I can give you no hope; there is nothing for it but to

collapse in deepest humiliation.[93]

The quantum Loschmidt paradox from Chapter 3 asks: does von Neumann entropy disobey

the Second Law of Thermodynamics, or do states evolve in a non-unitary way? According

to drunk models, this phrasing of the paradox is a false dichotomy caused by using the word

“state” for three distinct mathematical objects:

1. Evolution of the true state of a physical system is deterministic and unitary.

2. Evolution of the mean state of a theoretical model is deterministic and not unitary.

3. The estimated state inferred from experimental data is random and converges to the

mean state in the limit of many independent, identically-distributed trials.

Drunk models assume that, at all times, there exists some pure state which is the hypotheti-

cal best-possible description of a qubit. Evolution is unitary on each trial, but experimental

trials are not identical. A weaker assumption is used: the Hamiltonian is a stochastic process

which is identically distributed over all trials. Each sample path of represents a Hamiltonian

which might occur on an experimental trial, and the mean state is the expectation value of

the true state over the set of all possible Hamiltonians and initial conditions.
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A consequence of these assumptions is that time evolution is always reversible in principle

but often irreversible in practice. If trials of e.g. a Rabi or Ramsey test are very nearly

identical, then the inferred z(t) coordinate will be close to its intended sinusoidal oscillation

for sufficiently small values of t. As t increases, estimated states tend to decay into mixed

states as errors accumulate and each true state wanders off course. Theorists can keep the

Schrödinger equation and the Second Law from contradicting each other by assigning the

word entropy to mean states and estimated states, but never to true states.

7.1.1 Anthropomorphic entropy

The assumptions and conclusions of drunk models have much in common with maximum-

entropy thermodynamics (MaxEnt), but care should be taken not to conflate the two con-

cepts. Drunk models do not use any thermodynamic postulates and do not purport to

explain thermodynamics.2 The term “macrostate” appears only in Section 2.5, where it is

used only for comparison of mean states to thermal-equilibrium density matrices.

The common factor of MaxEnt and drunk models is the use of anthropomorphic entropy

in a manner similar what Jaynes advocated.[94][95] Drunk models avoid the phrase “entropy

of a qubit” because this terminology fails to distinguish between true states of systems, mean

states of models, and estimated states of experimental datasets. Mean and estimated states

evolve irreversibly even though true states do not. According to Jaynes:

It is possible to maintain the view that the system is at all times in some definite

but unknown pure state, which changes because of definite but unknown external

forces; the probabilities represent only our ignorance as to the true state. With

such an interpretation the expression “irreversible process” represents a semantic

confusion; it is not the physical process that is irreversible, but rather our ability

to follow it.[95]

Jaynes was describing semiclassical statistical mechanics; drunk models replace “external

forces” with “stochastic terms in the Hamiltonian.” In 1965, he added:

From this we see that entropy is an anthropomorphic concept, not only in the

well-known statistical sense that it measures the extent of human ignorance

as to the microstate. Even at the purely phenomenological level, entropy is an

anthropomorphic concept. For it is a property, not of the physical system, but

of the particular experiments you or I choose to perform on it.[24]

Jaynes attributed the phrase “entropy is an anthropomorphic concept” to Wigner.[24]

2Nonlinear drunk models might be useful for describing the approach of a qubit mean state to thermal
equilibrium, but that possibility is not investigated in detail in this thesis.
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Drunk models reserve the term entropy exclusively for von Neumann entropy of mean states

and/or estimated states. This usage is narrower than Jaynes’, but similar in spirit. The

probabilities assigned to a drunk model’s Hamiltonian are not necessarily natural properties

of the system being modeled. Rather, they represent that model’s inability to precisely

describe a system’s evolution during an experimental trial. When a drunk-model mean

state gains entropy, it is tempting to say “the system is decohering,” but it would be more

accurate to say “the model is losing its ability to predict the system’s true state.”

If Jaynes’ claim in [95] is taken to its logical extreme, then any physical state must have

a “best” representation as a pure state in some (system ⊗ environment) Hilbert space.3

Drunk models do not contradict this claim – they simply do not attempt to find a system’s

best representation. Environmental states are ignored, and any system-environment inter-

actions are represented as random noise. In the language of Tanimura and Kubo, a drunk

model’s stochastic Hamiltonian is merely a model appropriate for the problem rather than

an attempt to precisely describe a system and its environment.

7.1.2 The shuffle hypothesis

Prior to Jaynes’ theories on statistical physics, Eddington considered a somewhat similar

approach to resolving time-reversal paradoxes. He hypothesized:

Whenever anything happens which cannot be undone, it is always reducible to

the introduction of a random element analogous to that introduced by shuffling.[93]

A literal version of Eddington’s shuffle analogy demonstrates why drunk models do not

define “the entropy of a system.” Suppose a new deck of cards is opened and shown face-up

to two players, Allyson and Bob. Both players are asked, “What is the Shannon entropy

of the deck?” and both respond “It is zero. The deck is perfectly ordered.” Allyson then

shuffles the deck many times and places it face-down on the table. During her last shuffle,

she accidentally reveals the bottom card to Bob for a moment. For this example, suppose

it is Q♠. Both players are asked again, “What is the Shannon entropy of the deck?”

Allyson reasons that there are 52! possible states of the deck, and all are approximately

equally probable. The entropy of the deck is therefore ≈ 226 bits.

S ≡ −
52!∑
k=1

pk log2(pk) = −
52!∑
k=1

1
52! log2( 1

52!) = log2(52!) ≈ 226 bits

Bob says, “Close, but not quite correct. The last card is certainly Q♠, so there are 51!

equally-probable states. The entropy of the deck is log2(51!) ≈ 220 bits.”

3⊗ denotes the Hilbert space tensor product, which a colleague facetiously pronounced as tomato.
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It is intuitively apparent that Bob is cheating in some sense, but that does not falsify

his mathematical reasoning. The “entropy of the deck” is less from Bob’s point of view

because he has access to more information than Allyson.4 In an extreme version of the

analogy, suppose Allyson’s shuffles were recorded with a high-speed camera. With sufficient

patience, anyone with access to the recording could play it back in slow-motion, determine

the exact order of the cards, and conclude that the “entropy of the deck” is exactly zero.

It appears that the entropy of the deck depends on the mental state of the observer.

This subjectivity can be resolved by using the word “entropy” only to refer to the Shannon

entropy of a random variable and leaving the phrase “entropy of the deck” undefined.

Allyson and Bob each represent the unknown true state of the deck with a random variable.

Allyson’s variable A has a uniform distribution over the set of all 52! possible states. Bob’s

B has a uniform distribution over the set of all 51! possible states for which Q♠ is at the

bottom of the deck. The camera operator’s variable C assigns probability 1 to the true state

and 0 to all other states. The random variables A,B,C are anthropomorphic in the sense

that they are chosen by scientists rather than uniquely determined by Nature. Once these

variables are assigned probability distributions, their Shannon entropies are unambiguous:

in this case, S(A) = log(52!), S(B) = log(51!), and S(C) = 0.

In principle, any shuffle is a permutation, which is a reversible symmetry transformation. In

practice, nearly all information about the order of the cards is concealed from all players by

a good shuffle. Similarly, drunk models assume states evolve reversibly in ways that are too

unpredictable to be known accurately in practice. As with the Allyson’s Choice experiment

in Section 3.1, information about the true state of a system is presumed to be encrypted by

environmental noise, not destroyed by it. As with the Zech’s Qubit experiment in Section 3.3

and engineered-decoherence experiments such as [26], observers with a sufficiently accurate

recording of a state’s evolution may be able to “rewind” it and conclude its entropy is

zero. To avoid subjectivity paradoxes, drunk models define entropy for density matrices (or

equivalently, points inside the Bloch ball), but never for physical systems.

Eddington’s analogy also provides a convenient way to dodge another paradox which some-

times plagues theories of decoherence. If a finite-dimensional system evolves by unitary

transformations, then it must eventually return to a state arbitrarily close to its initial

state. The formal statement of this property is found in quantum-mechanical versions of

the Poincaré recurrence theorem.[96][97][98] In terms of Eddington’s shuffle analogy,

There is a ghost of a chance that some day a thoroughly shuffled pack will be

found to have come back to the original order.[93]

4If the deck had been “cut” according to common card-playing practices, then Bob he would only know
that Q♠ is somewhere in the middle of the deck.
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Mean states and estimated states are exempt from Poincaré recurrence theorems. (Time

evolution of mean and estimated states is not volume-preserving, so the theorem does not

apply.) The toy dephasing model in Chapter 4 is an example: the trajectory of each true

state wanders endlessly around a circle, but the mean state spirals irreversibly inward.

7.1.3 Fake decoherence

The term decoherence has acquired a variety of different definitions in different contexts.

For the models in this thesis, decoherence refers exclusively to von Neumann entropy gain

of mean states and estimated states. Researchers often use these terms more broadly. Joos,

et al. suggest partitioning the definition of decoherence into three categories called true,

false, and fake. Each refers to damping of non-diagonal terms (in some basis) of a density

matrix. Abbreviated versions of their definitions from [99] are below:

1. True decoherence: The fundamental decoherence mechanism is “pure” entangle-

ment with the environment without any dynamical change of the component states.

2. False decoherence: Coherence is trivially lost if one of the required components

disappears. An important situation of this kind is represented by relaxation processes.

3. Fake decoherence: Decoherence often arises from some averaging process. Two typ-

ical situations are noteworthy. The ensemble either consists of members undergoing

the same unitary evolution but with different initial states, or an ensemble of identi-

cally prepared states subjected to different Hamiltonians is employed. In both cases

the fundamental dynamics of a single system is unitary, hence there is no decoherence

at all from a microscopic point of view.

If these definitions are used, then all decoherence predicted by drunk models is fake. Though

the word “fake” sounds derogatory, it can be a useful reminder that mean states and es-

timated states are properties of models and experiments, not of physical systems. Mean

states and estimated states are results of averaging processes: mean states are expectation

values over an ensemble of initial states and/or different Hamiltonians, and estimated states

are sample means of an experimental dataset. Fluctuations are caused by finite-sample-size

statistical errors, and dissipation is due entirely to non-identical trials.

As an example of fake decoherence, Joos, et al. describe the experiments [100] and [26] in

a way that is similar to the pathwise construction of a drunk qubit in Chapter 2:

It may thus appear that decoherence can also be obtained from “classical per-

turbations” (kicks) of the quantum system... For “classical noise” the system

follows a unitary (even though uncontrollable in practice) dynamics; in each

individual case it stays in a pure state (that may remain unknown because of an
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insufficiently known Hamiltonian)... In contrast, decoherence leads determinis-

tically to an entangled state that has quite different properties. “Noise” models

are in fact only used in situations where this difference cannot be observed.[99]

Zurek also emphasizes that fake decoherence is reversible in principle, even if it is irreversible

in practice. His description of the engineered-decoherence experiments [26][101][102] is

conceptually similar to drunk models and Jaynes’ view of entropy:

Following a particular realization of the noise, the state of the system is still

pure. Nevertheless, an ensemble average over many noise realizations is repre-

sented by the density matrix that follows an appropriate master equation. Thus,

as Wineland, Monroe, and their colleagues note, decoherence simulated by clas-

sical noise could be in each individual case – for each realization – reversed by

simply measuring the corresponding time-dependent noise either beforehand or

afterwards, and then applying the appropriate unitary transformation to the

state of the system. By contrast, in the case of entangling interactions, two

measurements, one preparing the environment before the interaction with the

environment, the other following it, would be the least required for a chance of

undoing the effect of decoherence.[103]

Mean states are ensemble averages over all possible noise realizations, which is similar to

Zurek’s description. But drunk models do not necessarily assume that all noise is caused

by random classical fields. The Zech’s Qubit thought experiment in Section 3.3 uses a

random classical field as a noise source, but this is only an example chosen for the sake of

simplicity. The stochastic process Bt is merely a convenient choice of parameters for an

erratic Hamiltonian and need not be an actual classical field.

7.2 Comparison with other theories

A complete list of every theory of decoherence – or even those directly relevant to drunk

models – would be far too large to fit in these pages. This section briefly describes the

relation of the models in this thesis to two broad classes of decoherence theories: those

which attempt to accurately represent a system’s environment, and those which replace

the Schrödinger equation with a master equation permitting non-unitary evolution. The

practical motivation for all of these theories is, in Zurek’s words,

In the absence of the ideal – a completely isolated absolutely perfect quantum

computer, something easy for a theorist to imagine but impossible to attain

in the laboratory – one must deal with imperfect hardware leaking some of its

information to the environment.[103]
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Drunk models fall into the non-unitary category. Environmental details are deliberately

ignored for the sake of calculational simplicity. A system’s true state and true Hamiltonian

are presumed to be unattainable mathematical idealizations. Their purpose is to provide

deliberately-imperfect descriptions of experiments for which accurate representations of a

qubit’s environment are impossible, impractical, or simply too difficult to solve. In these

situations, drunk models are a consolation prize; a random model is much better than no

model. In terms of Eddington’s shuffle analogy: if we can’t predict the order of a deck of

cards, we can still represent it as a random variable and calculate odds.

For some experiments, a gambler’s attitude may be too pessimistic. One well-known al-

ternative is to represent a system’s environment as a “bath” of infinitely-many harmonic

oscillators. Feynman and Vernon proposed a harmonic-bath model in a 1963 paper based

on part of Vernon’s PhD thesis.[104] In the 1980’s, Caldeira and Leggett used Feynman-

Vernon influence functionals to find an exactly soluble model of environmental damping of

two Gaussian wave packets in a harmonic potential.[105] Caldeira’s PhD thesis also used

Feynman-Vernon methods to derive a density matrix for Brownian motion.[106] Joos, et al.

mention other examples: [107] uses a harmonic bath to model dissipative quantum transport,

and [108][109] describe Stern-Gerlach and EPR-type experiments using Caldeira-Leggett

methods. A cite-search of [104] and [106] reveals hundreds of other examples in which

specific environmental models are used to describe dissipative quantum systems.

If it is possible to explicitly describe the details of a system’s environment, and it is practical

to solve or approximate the resulting model to sufficient precision, then drunk models may

appear unnecessary. In the author’s opinion, this is a perfectly reasonable conclusion. Why

pretend a shuffle is random when one has a detailed model of the shuffling mechanism?

Explicit environmental models necessarily require extra degrees of freedom – in some cases,

infinitely many. For many experiments, an explicit model may be impractical to derive

and/or too difficult to solve accurately. An alternative is provided by master-equation

methods. The most well-known of these are the Kossakowski-Lindblad master equations

(KLM) developed in the 1970’s. Like drunk models, KLM equations model the influence of

a system’s environment without attempting to model the environment itself in detail. The

best description of a system and its environment is presumed to be a pure state in some

larger (system ⊗ environment) Hilbert space, and the environment is “averaged over” by

performing a partial trace. The next subsection briefly reviews KLM equations and their

relationship to the drunken master equation from Section 4.1.
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7.2.1 Kossakowski-Lindblad master equations

To define a Kossakowski-Lindblad master equation for an N -level system, choose

N2 − 1 linear operators {L̂m} which are traceless and Hilbert-Schmidt orthogonal:

Tr[L̂m] = 0 Tr[L̂nL̂m] = δnm

Choose an (N2−1)×(N2−1) complex matrix Ĉ whose eigenvalues are non-negative real, and

let {cnm} denote its elements. Time evolution of a density matrix ρ̄ is given by:[52]

~
d

dt
ρ̄ = −ı

[
Ĥ, ρ̄

]
+

1

2

N2−1∑
n=1

N2−1∑
m=1

cnm

([
L̂n , ρ̄L̂

†
m

]
+
[
L̂nρ̄ , L̂

†
m

])
(KLM)

which is often written in an alternate form:

~
d

dt
ρ̄ = −ı

[
Ĥ, ρ̄

]
+

N2−1∑
n=1

N2−1∑
m=1

cnm

(
L̂nρ̄L̂

†
m −

1

2
{ L̂†mL̂n , ρ̄ }

)

Here { , } is the matrix anticommutator {Â, B̂} ≡ ÂB̂+B̂Â. Equations of the form (KLM)

can predict non-unitary evolution of ρ̄. According to Lindblad, their purpose is:

The dynamics of a finite closed quantum system is conventionally represented

by a one-parameter group of unitary transformations in Hilbert space. This

formalism makes it difficult to describe irreversible processes like the decay of

unstable particles, approach to thermodynamic equilibrium and measurement

processes.

It seems that the only possibility of introducing an irreversible behavior in a

finite system is to avoid the unitary time development altogether by considering

non-Hamiltonian systems. One way of doing this is by postulating an inter-

action of the considered system S with an external system R like a heat bath

or a measuring instrument... A different physical interpretation with the same

mathematical structure is to consider S as a limited set of (macroscopic) degrees

of freedom of a large system S +R and R as the uncontrolled (microscopic) de-

grees of freedom. If the reservoir R is supposed to be finite (but large) then the

development of the system S +R may be given by a unitary group of transfor-

mations. The partial state of S then suffers a time development which is not

given by a unitary transformation in general.[110]
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The drunken master equation derived in Section 4.1 is a KLM equation. To see the rela-

tionship, choose rescaled Pauli matrices as the operators {L̂m}:5

L̂1 = 1√
2
σ̂x L̂2 = 1√

2
σ̂y L̂3 = 1√

2
σ̂z

After some straightforward but tedious algebra (or symbolic Mathematica computation),

the resulting KLM equation can be written in terms of Pauli coordinates:

d

dt
r̄ = H× r̄ + M̂ r̄ + b

where the matrix M̂ and column vector b are:

M̂ ≡


−c22 − c33

1
2(c12 + c21) 1

2(c13 + c31)

1
2(c12 + c21) −c11 − c33

1
2(c23 + c32)

1
2(c13 + c31) 1

2(c23 + c32) −c11 − c22

 b ≡


ı(c23 − c32)

ı(c31 − c13)

ı(c12 − c21)


Suppose the coefficient matrix Ĉ is real symmetric. Then b = 0, and:

M̂ =


−c22 − c33 c12 c13

c21 −c11 − c33 c23

c31 c32 −c11 − c22

 = Ĉ − Tr[Ĉ]1̂

Recall from Section 4.1 that any qubit drunken master equation can be written

d

dt
r̄ = −µ× r̄ +

1

2

(
Σ̂T Σ̂− Tr[Σ̂T Σ̂]1̂

)
r̄

Any qubit drunken master equation is a KLM equation whose {L̂m} operators are rescaled

Pauli matrices and whose effective H and coefficient matrix Ĉ are:

H = −µ Ĉ =
1

2
Σ̂T Σ̂

The derivation of the drunken master equation is very different from the methods used by

Kossakowski and Lindblad, but the strategies are not entirely antithetical. From a physical

perspective, each assumes that a qubit is described by averaging over some larger system

which is a nuisance to model accurately. But while all qubit drunken master equations are

KLM equations, the converse is false. In particular, any Bloch equation with a nonzero

steady-state solution is a KLM equation but not a drunken master equation.

5Rescaling is necessary to comply with the convention Tr[L̂nL̂m] = δnm. The annoying factor of 2 has
returned from Chapter 1 to annoy us once again!
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The Bloch equation for a mean state r̄ = [x̄, ȳ, z̄]T is:

d

dt
x̄ = −

(
µ× r̄

)
x
− x̄

T2

d

dt
ȳ = −

(
µ× r̄

)
y
− ȳ

T2

d

dt
z̄ = −

(
µ× r̄

)
z
− z̄ − z∞

T1

where z∞ denotes the steady-state z̄ coordinate. If the steady-state value of r̄ is the infinite-

temperature canonical mixed state, then z∞ = 0. In this case, the Bloch equation is the

drunken master equation derived from the linear Bloch model in Section 4.5. But if z∞ 6= 0,

then the Bloch equation is not a drunken master equation.

7.3 Future research

This section briefly suggests possible generalizations and improvements.

Nonlinear drunk models

A nonlinear drunk model was introduced in Section 4.6, but it was not developed in detail.

The reason is simple: solving nonlinear stochastic differential equations is difficult, and the

master equation derivation in Section 4.1 does not work for nonlinear models. Readers

who are interested in nonlinear models are encouraged to use and/or modify the MATLAB

script StochasticNonlinear in Appendix C for Monte Carlo simulations.

N-level systems

One obvious limitation of the models in this thesis is that each describes a single qubit.

Wherever possible, definitions and assumptions have been designed to assist any future at-

tempts at generalizing to arbitrary finite-dimensional systems. Appendix B outlines meth-

ods for generalizing Pauli coordinates to higher dimensions. Fano’s 1957 review and a

related paper by Weigert from 1999 may be especially helpful for this task.[2][12] Fox’s

prior work on stochastic Hamiltonians is also very relevant.[50][51][49]

The distinctions between drunken master equations and KLM equations may be more promi-

nent for N -level systems with N > 2. Gorini and Kossakowski noted that:

...unless N = 2, not all center-preserving completely positive dynamical maps of

anN -level system can be obtained as convex combinations of unitary transformations.[53]



127

The mean state of any drunk model is, by definition, a convex combination of pure states

which are each unitary transformations of an initial state. This difference may be a major

incompatibility between drunk models and KLM equations in higher dimensions.

Systems with memory

As was briefly mentioned in Section 4.6, all the models in this thesis are Markovian. From a

physical point of view, the Markov property can be heuristically stated as “a system might

remember where it is, but not how it got there.” Markovian processes may be inadequate

for modeling systems which “remember” prior states. As early as 1957, Jaynes had warned

about the difficulty of non-Markovian stochastic models:

In the case of a system perturbed by random fluctuation fields, the density ma-

trix cannot satisfy any differential equation because ρ̇(t) does not depend only

on ρ(t), but also on past conditions. The rigorous theory involves stochastic

equations of the type ρ(t) = G(t, 0)ρ̂(0), where the operator G is a functional

of conditions during the entire interval (0 → t). Therefore a general theory of

irreversible processes cannot be based on differential rate equations correspond-

ing to time-proportional transition probabilities. However, such equations often

represent useful approximations.[95]

The mean state of a linear drunk model does not depend on past conditions, and it does

indeed satisfy a differential equation (the drunken master equation). This luxury is available

because ρ̇(t) does not depend on ρ(s) unless s = t.

Colored and/or non-Gaussian noise

As mentioned in the introduction to Chapter 4, all of the stochastic differential equations

in this thesis are either Itō or Stratonovich-Fisk equations involving Gaussian white noise

(GWN). Here white noise means a stochastic process whose power spectral density is con-

stant over all frequencies, and Gaussian noise means a stochastic process whose increments

are normally distributed. The exclusive use of GWN in this thesis commits two common

statistical misdeeds: assuming random variables are Gaussian, and assuming increments of

a noise process are independent. This decision was made primarily for convenience, as most

of the relevant mathematics can be found in textbooks such as [46][57][58] and [59].

Two alternatives which may be of interest are fractional Brownian motion and functional

Itō calculus. Fractional Brownian motion was developed by Mandelbrot and van Ness to

describe colored Gaussian noise.[111] Functional Itō calculus was developed by Dupire to

generalize Itō calculus for path-dependent functions.[112]
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A STOCHASTIC CALCULUS

This appendix is intended as a brief overview of the methods and terminology used in Chap-

ter 4. For thorough definitions and explanations, see textbooks such as [46][57][58][59].

For many practical purposes, a stochastic process can be thought of as a random variable

which changes in time. A common example is the simple random walk. Suppose a

gambler bets $1, with even-money odds, that a fair coin flip will land heads. Represent the

result of each toss with a random variable Xt which has two outcomes 1 and -1, each of

which occurs with probability 1
2 . Let St denote the gambler’s profit after t tosses:

St ≡
t∑

j=1

Xj

It is a common abuse of notation to say “the stochastic process St,” though it would be

more accurate to call the sequence of random variables {S0, S1, S2, . . .} a stochastic process.

The Wiener process Wt is, roughly speaking, St in the limit that the coins are flipped very

rapidly with very small bet sizes designed to keep the variance per hour unchanged.

As a heuristic for stochastic differential equations, consider a difference equation:

Yt+1 = Yt + 3 +Xt Y0 = 0

where Xt is defined as before. If there were no noise term Xt, then Yt would evolve deter-

ministically and the solution would be Yt = 3t. Intuitively, one might correctly guess that

3t is the expected value of Yt because each toss has expected value zero. Now suppose the

amplitude of the noise is increased so that the difference equation becomes

Yt+1 = Yt + 3 + 10Xt Y0 = 0

Figure A.1 shows two Monte Carlo simulations consisting of 42 trials each of the “quiet”

and “loud” difference equations. The “loud” version is far more volatile, but its expected

value still drifts upward at the same rate of $3 per toss.
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Figure A.1: 42 simulated sample paths for Yt as t advances from 0 to 100.
Left: “quiet” Yt+1 = Yt + 3 +Xt. Right: “loud” Yt+1 = Yt + 3 + 10Xt.

A.1 Itō and Stratonovich-Fisk calculus

An increment of a stochastic process X over a time interval [s, t] is a random variable

Xt −Xs. The following properties define the Wiener process W :

0. W0 = 0

1. Each increment Wt −Ws is normally-distributed with mean 0 and variance |t− s|.

2. Increments over non-overlapping intervals are independent, e.g. W2 −W1 is indepen-

dent of W1 −W0.

3. W is almost surely continuous at any t.

In general, one must clearly specify whether a stochastic differential equation is meant to be

solved by Itō or Stratonovich-Fisk rules. For drunk models, the ability to switch between

these two formalisms is very useful. The essential ideas are:

• dW is “an infinitesimal increment of W ,” but this is ill-defined by ordinary calculus.

• Itō and Stratonovich-Fisk (SF) stochastic calculi are two distinct formalisms for sen-

sibly writing Wt =
∫ t

0 dW .

• The Wong-Zakai correction converts Itō SDEs to SF SDEs and vice versa.

Special rules of calculus are needed because Wt is almost surely not differentiable at any

t. Informally, Wt is “infinitely squiggly” in the sense that one can zoom in very close on

a plot of Wt without finding a good linear approximation.1 However, it is still possible to

define
∫
dW in a way similar to Riemann-Stieltjes (RS) integration. Suppose f, g are two

1More precisely, Wt has nonzero quadratic variation.
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functions of time. The RS integral
∫
f(t)dg(t) is:

∫ tJ

t0

f(t) dg(t) ≡ lim
J→∞

J−1∑
j=0

f(tj)
[
g(tj+1)− g(tj)

]
From a numerical point of view, the time interval [t0, tJ ] is broken into J timesteps with

J+1 endpoints {t0, . . . , tJ}. On each timestep, the computer multiplies f(tj) by the change

in g during the step. If timesteps are sufficiently short, then the choice of when to evaluate

f during each step becomes arbitrary. For Itō and Stratonovich-Fisk integrals, the choice

of when to evaluate f is not arbitrary. Itō integrals evaluate f(t) at the beginning of each

timestep, and SF integrals use the midpoint.

∫ tJ

t0

f(t) dW ≡ lim
J→∞

J−1∑
j=0

f(t?)
[
Wtj+1 −Wtj

] Itō: t? = tj

SF: t? = 1
2(tj + tj+1)

Itō and SF integrals are the limits (in probability) of these sums for small timesteps. The def-

inition can also be extended for cases in which the integrand is a stochastic process.2

Stochastic differential equations

Consider a one-dimensional SDE with one noise source:

dXt = g(t,Xt)dt+ h(t,Xt)dW (A.1)

The functions g and h are drift and diffusion terms. (A.1) is simplified notation for

XT = X0 +

∫ T

0
g(t,Xt)dt+

∫ T

0
h(t,Xt)dW

where the second integral is a stochastic integral. Equation (A.1) is ambiguous until one

specifies which stochastic calculus to use. A common convention is to use dW to denote Itō

calculus and ◦ dW for SF calculus. Two important distinctions are:

• The expectation value E[
∫ T

0 f(t,Xt) dW ] is 0, but E[
∫ T

0 f(t,Xt) ◦ dW ] need not be.

◦ The Chain Rule from ordinary calculus works for SF calculus, but it fails for Itō

calculus and must be replaced by Itō’s Lemma.

2Itō integrals
∫
XtdW are well-defined only if Xt is adapted to the natural filtration of Wt. Informally, this

means “the integrand cannot see into the future,” i.e. Xt probabilities can depend on events that occurred
at or before time t, but not after t. For measure-theoretic definitions, see e.g. [57] or [58].
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Itō’s Lemma

Suppose f is some function of t and x with well-behaved derivatives ḟ ≡ ∂tf, f ′ ≡ ∂xf, and

f ′′ ≡ ∂2
xf . Then f(t,Wt) solves the following SDEs:

Itō’s Lemma: df(t,Wt) = ḟ(t,Wt)dt + f ′(t,Wt)dW + 1
2f
′′(t,Wt)dt

SF Chain Rule: df(t,Wt) = ḟ(t,Wt)dt + f ′(t,Wt) ◦ dW

The SF Chain Rule conveniently resembles the ordinary Chain Rule if Wt were a differ-

entiable function of time. For Itō SDEs, change-of-variables formulas must be calculated

using Itō’s Lemma instead. This curiosity can be a dangerous nuisance when solving Itō

SDEs on curved manifolds. However, expectation values of Itō SDEs are much easier to

calculate. One can simply erase the dW terms:

E
[
f(tJ ,WtJ )

]
= f(t0,Wt0) +

∫ tJ

t0

(
ḟ(t,Wt) + 1

2f
′′(t,Wt)

)
dt +

���������
∫ tJ

t0

f ′(t,Wt) dW

This magic trick follows from the martingale property of Itō integrals. Roughly speaking,

martingales are mathematical representations of “fair games” whose expectation values are

zero no matter what strategy is employed.

The mean state of a drunk model is the expectation value of an SDE on a curved manifold.

For this type of problem, it is often easiest to use both calculi:

In order to “get the benefit of both worlds” it is important to know how to

convert an Itō equation into a Stratonovich equation, and vice versa. When

calculus operations are required, conversion from Itō to the Stratonovich form

can be performed, and then regular calculus can be used. Or, if expectation

operations are required, a Stratonovich equation can be converted to Itō form,

and then the expectation can be taken.[46]

The Box Calculus and Wong-Zakai correction can be used to convert between calculi.

Box Calculus

The Box Calculus is a mnemonic for Itō’s Lemma. Let f be a function of t, x, y, z. Let r

be a vector-valued stochastic process.3 Then f(t, rt) solves the Itō SDE:

df(t, rt) = ḟ(t, rt) dt + ∇f(t, rt) · dr +
1

2
drT [D̂2f(t, rt)]dr (A.2)

3This r must be a semimartingale and the relevant partial derivatives must exist.
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Here ∇f and D̂2f are the gradient and Hessian second-derivative matrix of f . To remember

this formula, formally Taylor-expand f to first order in dt and second order in dx, dy, dz.

In column-vector notation, it is:

df = ∂tf +

[
∂xf ∂yf ∂zf

]
dxt

dyt

dzt

 +
1

2

[
dzt dyt dzt

]
∂xxf ∂xyf ∂xzf

∂yxf ∂yyf ∂yzf

∂zxf ∂zyf ∂zzf



dxt

dyt

dzt


Substitute formulas for dxt, dyt, dzt into (A.2) and replace any second-order infinitesimals

of the form dt2, dW 1dW 1, dW 1dt, dW 2dW 1, etc. according to this box:

dt dW 1 dW 2 dW 3

dt 0 0 0 0

dW 1 0 dt 0 0

dW 2 0 0 dt 0

dW 3 0 0 0 dt

The Wong-Zakai correction

If f(t, rt) solves (A.2), then it also solves an equivalent SF SDE:

df(t, rt) = ḟ(t, rt) dt + ∇f(t, rt) ◦ drt

The SF Chain Rule is Itō’s Lemma without the second-order terms. This difference can be

used to derive the Wong-Zakai correction. Suppose rt is a solution to the SF SDE

drt = g(t, rt) dt + η(t, rt) ◦ dW

Let D̂η denote the Jacobian derivative of η with respect to x, y, z. Then rt solves this Itō

SDE:[113]

drt = g(t, rt) dt + η(t, rt) dW +
1

2
[D̂η(t, rt)]η(t, rt) dt (WZ)

This formula can be generalized to SDEs with multiple independent dW terms by summing

Wong-Zakai corrections for each dW .[46] The following SDEs are equivalent:

drt = g(t, rt) dt +
M∑
m=1

ηm(t, rt) ◦ dWm (SF)
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drt = g(t, rt) dt +

M∑
m=1

ηm(t, rt) dW
m +

1

2

M∑
m=1

[D̂ηm(t, rt)]ηm(t, rt) dt (Itō)

Here M is the number of dWm terms and m is an index, not an exponent.

A.2 Centrifugal drift of Itō SDEs

A numerical view may provide intuition about “centrifugal drift” in Itō SDEs such as dxt

dyt

 =

 0 µ

−µ 0


 xt

yt

 dt+

 0 ν

−ν 0

 dW (Cyclone)

The lack of a ◦ symbol before the dW means “use Itō calculus.” If (Cyclone) were an SF

SDE, the solution would be confined to a circle of radius
√
x2

0 + y2
0. But (Cyclone) is an Itō

SDE, and the expected radius grows exponentially! Consider a linear approximation with

a discrete timestep of size h: xt+h

yt+h

 ≈
 xt

yt

+

 0 µ

−µ 0


 xt

yt

h +

 0 ν

−ν 0


 xt

yt

(Wt+h −Wt

)

Let ∆ denote a random real number with standard normal distribution. Then
√

h∆ is a

random real with the same distribution as (Wt+h − Wt). On each timestep, replace the

Wiener increment with
√

h∆: xt+h

yt+h

 ≈
 1 µh + ν

√
h∆

−(µh + ν
√

h∆) 1


 xt

yt


This is the Euler-Maruyama method (EMM) from Section 5.3. Though it is neither sta-

ble nor accurate, EMM does correspond closely to Itō’s definition of
∫
dW . Roughly speak-

ing, it evaluates the generator at the beginning of each timestep, just as Itō intended.

The squared norm |rt+h|2 of the approximate solution to (Cyclone) is:

(
1 + [µh + ν

√
h∆]2

)
(x2
t + y2

t )

The approximate |rt+h| is larger than |rt|. Radial growth is a known numerical artifact

of the Euler method which vanishes in the limit h → 0. But the radial growth rate of

(Cyclone) does not vanish as timesteps become small. Define a function r̄2(t) ≡ E[x2
t + y2

t ].



134

The time derivative of r̄2(t) is:

d

dt
r̄2(t) = lim

h→0

E
[
|rt+h|2

]
− E

[
|rt|2

]
h

= lim
h→0

E
[
(µh + ν

√
h∆)2

]
h

The mean and variace of ∆ are E[∆] = 0 and E[∆2] = 1. The numerator is:

E
[
(µh + ν

√
h∆)2

]
= E[µ2h2] + E[2µνh∆] + E[ν2h∆2] = µ2h2 + ν2h

The time derivative of r̄2(t) must therefore be:

d

dt
r̄2(t) = lim

h→0

µ2h2 + ν2h

h
= ν2

No matter how small h is, the “centrifugal drift” remains. The solution to this ODE is:

r̄2(t) = r̄2(0)eν
2t ⇔ r̄(t) = r̄(0)e

1
2ν

2t

Suppose (Cyclone) were an SF SDE. To find an equivalent Itō SDE, add the Wong-Zakai

correction:  dxt

dyt

 =

 −1
2ν

2 µ

−µ −1
2ν

2


 xt

yt

 dt+

 0 ν

−ν 0

 dW (Circle)

Sample paths of (Cyclone) and (Circle) are shown in Figure A.2. Both use µ = 1, ν =

0.6, (x0, y0) = (1, 0), t ∈ [0, 10] and the EM method with 1000 timesteps per time unit.

Note that the simulation of (Circle) deviates from the unit circle by a small but visible

amount. The Castell-Gaines ExpMid method is slower than EM, but it is far superior at

eliminating this type of “accidental” radial drift.

Figure A.2: Left: 10 sample paths (Cyclone). Right: 10 sample paths of (Circle).
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A.3 Probability density for spherical Brownian motion

The isotropic drunk model in Section 4.4 is an example of spherical Brownian motion. The

derivation here differs considerably from Yosida’s, but it leads to the same conclusion.[60]

It is presented here mainly to illustrate that the two-calculi method is a much easier way to

find expectation values. For the isotropic model, rt is the solution to this SF SDE:

drt = η1(rt) ◦ dW 1 + η2(rt) ◦ dW 2 + η3(rt) ◦ dW 3

where the superscriptsW 1,W 2,W 3 are indices, not exponents. The noise terms ηm are:

η1(rt) = −νÎrt η2(rt) = −νĴrt η3(rt) = −νK̂rt

where Î , Ĵ , K̂ are the 3D rotation generators. Let p be the probability density for rt. The

Fokker-Planck-Kolmogorov (FPK) equation is a partial differential equation for p.

Formulas for the FPK equation can be found in textbooks such as [46]. For an SF SDE,

and using the notation of this thesis, it is:

∂tp =
1

2
∇ ·
(
η1

[
∇ · (η1p)

]
+ η2

[
∇ · (η2p)

]
+ η3

[
∇ · (η3p)

])
(FPK-SF)

While it is not at all obvious in the present form, (FPK-SF) for Yosida’s qubit is identical

to the heat equation on a sphere. To show this, first note that the first and second radial

directional derivatives of p are:

Drp =
r

|r|
· ∇p =

x∂xp+ y∂yp+ z∂zp√
x2 + y2 + z2

D2
rp =

r

|r|
· ∇
[ r

|r|
· ∇p

]
=
x2∂2

xp+ y2∂2
yp+ z2∂2

zp+ 2xy∂x∂yp+ 2yz∂y∂zp+ 2zx∂z∂xp

x2 + y2 + z2

A tedious calculation (with help from Mathematica) shows that (FPK-SF) is:

∂tp =
ν2

2

(
|r|2∇2p− |r|2D2

rp− 2|r|Drp
)

In x, y, z coordinates, ∇2p = ∂2
xp+ ∂2

yp+ ∂2
zp. In spherical coordinates, it is:4

∇2p = ∂2
rp+

2

r
∂rp+

1

r2 sin θ
∂θ
[
(sin θ)∂θp

]
+

1

r2(sin θ)2
∂2
φp

4Use the “North pole zero” conventions with θ = 0 when z = 1, φ = 0 when x = 1, and φ ∈ [0, 2π).
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In spherical coordinates, (FPK-SF) becomes:

∂tp =
ν2

2

(
r2∇2p− r2∂2

rp− 2r∂rp
)

=
ν2

2

( 1

sin θ
∂θ
[
(sin θ)∂θp

]
+

1

(sin θ)2
∂2
φp
)
≡ ν2

2
∇2

Ωp

Here ∇2
Ω denotes the Laplace-Beltrami operator on a spherical surface – or equivalently,

the |r|2∇2 operator on R3 minus its radial terms. The result is:

∂tp(t, θ, φ) =
ν2

2
∇2

Ωp(t, θ, φ)

Look for separable solutions of the form p(t, θ, φ) = T (t)Y (θ, φ):

2T ′(t)
ν2T (t)

=
∇2

ΩY (θ, φ)

Y (θ, φ)

The eigenfunctions of ∇2
Ω are the spherical harmonics Y m

l (θ, φ) with eigenvalues −l(l+ 1).

The most general solution can be written as a linear combination of eigenfunctions:

p(t, θ, φ) =
∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ)e−

1
2
ν2l(l+1)t (A.3)

for some constants {cml }. Suppose the initial state is the (pure) ground state θ = 0. The

initial condition for p is a Dirac δ distribution which can be expanded as a linear combination

of spherical harmonics:[114]

p0(θ, φ) = δ2(θ, φ) =
∞∑
l=0

l∑
m=−l

Y m
l (θ, φ)[Y m

l (0, 0)]∗

φ symmetry means only m=0 terms are needed. The Y 0
l harmonics are:

Y 0
l (θ) =

√
2l + 1

4π
Pl(cos θ)

where {Pl} are Legendre polynomials. The coefficients {c0
l } for this initial condition are:

c0
l = [Y 0

l (0, 0)]∗ =

√
2l + 1

4π
Pl(1) =

√
2l + 1

4π

Substituting these coefficients into (A.3), the probability density at time t ≥ 0 is:

p(t, θ, φ) =
∞∑
l=0

2l + 1

4π
Pl(cos θ)e−

1
2ν

2l(l+1)t
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The mean state r̄(t) is the expectation value E[rt]. Axial symmetry and isotropic diffusion

imply E[xt] = E[yt] = 0. To find E[zt], use z = r(cos θ) and r = 1, then integrate:

E[zt] = E[cos θ] =

∫ π

0

∫ 2π

0
(cos θ)p(t, θ)(sin θ)dφdθ = 2π

∫ π

0
(cos θ)p(t, θ)(sin θ)dθ

=

∞∑
l=0

2l + 1

2
e−

1
2ν

2l(l+1)t
∫ π

0
(cos θ)Pl(cos θ)(sin θ)dθ

The l = 1 Legendre polynomial is P1(cos θ) = cos θ. The {Pl} are orthogonal:∫ π

0
Pl(cos θ)Pl′(cos θ)(sin θ)dθ =

∫ 1

−1
Pl(cos θ)Pl′(cos θ)d(cos θ) =

2

2l + 1
δll′

Only the l = 1 term contributes to the series for E[zt]. The mean state is:

x̄(t) = E[xt] = 0 ȳ(t) = E[yt] = 0 z̄(t) = E[zt] = e−ν
2t

Rotational symmetry then implies E[rt] for any initial pure state r0 must be

r̄(t) = E[rt] = r0e
−ν2t

which is the same solution predicted by the two-calculi method.
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B BASIS OBSERVABLES

Each of the models in this thesis describes a single qubit, as does the numerical code in

Appendix C. This appendix suggests methods for constructing drunk models of higher-

dimensional systems. The methods are based on Fano’s 1957 review [2], though many

details and proofs have been omitted for brevity and simplicity.

The Pauli coordinates in Chapter 1 represent any pure or mixed qubit state using 3 real

numbers and any qubit observable using 4 real numbers. For many calculations, this choice

of representation leads to simpler formulas with an intuitive geometric representation. Basis

observables can be used to define similar coordinates for N -level systems. These are N2−1

“favorite” observables chosen to play the role that Pauli matrices do for qubits.

B.1 N-level systems

An N -level system is a quantum system with N orthogonal energy eigenstates, where

N is some natural number. State vectors for N -level systems are elements of the Hilbert

space CN . If an ordered orthornormal basis for CN is chosen, then each state vector can be

represented by an N×1 complex column vector, and any observable can be represented by

an N×N self-adjoint complex matrix. The term observable will be used here to mean either

an observable or the matrix representing that observable. This is an abuse of notation, but

it is usually safe if all parties agree to use the same ordered basis for all calculations.

By this definition, a qubit is an N -level system with N = 2. A system of Q coupled qubits,

also known as a quantum register, is an N -level system with N = 2Q. For example, the

conventional ordered basis for a system of 3 qubits is:

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉

where e.g. |Ψ〉 = |100〉 means “qubit 1 is in its excited state, qubit 2 is in its ground

state, and qubit 3 is in its ground state.” The system’s state vector can be any normalized

superposition of these 23 = 8 basis states. Using this basis, state vectors can be represented

as 8×1 column vectors and observables as 8×8 self-adjoint matrices.
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Define the metaspace ΩN as the set of all observables of an N -level system. Given the

usual rules of matrix addition and scalar multiplication, ΩN forms a real vector space.1

The metaspace ΩN of an N -level system has dimension N2. To see why, note that each

matrix in ΩN has N real diagonal elements and N2−N complex off-diagonal elements. For

self-adjoint matrices, each upper-triangular element is the conjugate of its corresponding

lower-triangular element, so it is only necessary to specify parameters for half of the off-

diagonal elements. Each complex number can be specified by two real parameters, so a

total of N + 2 · 1
2(N2 −N) = N2 independent real parameters are necessary and sufficient

to uniquely specify an N -level observable.

For any two observables Â, B̂ ∈ ΩN , define the Hilbert-Schmidt inner product:2

Tr[Â†B̂]

Basis observables are any N2−1 observables {X̂m} ⊂ ΩN which are traceless, orthogonal,

and normalized such that Tr[X̂2
m] is some constant C:

Tr[X̂m] = 0 Tr[X̂lX̂m] =

 C if l = m

0 if l 6= m

Pauli matrices are an example of basis observables for N = 2 with normalization C = 2.

The Gell-Mann matrices {λ̂m} are basis observables for N = 3 with C = 2:

λ̂1 =


0 1 0

1 0 0

0 0 0

 λ̂2 =


0 −ı 0

ı 0 0

0 0 0

 λ̂3 =


1 0 0

0 −1 0

0 0 0

 λ̂4 =


0 0 1

0 0 0

1 0 0



λ̂5 =


0 0 −ı

0 0 0

ı 0 0

 λ̂6 =


0 0 0

0 0 1

0 1 0

 λ̂7 =


0 0 0

0 0 −ı

0 ı 0

 λ̂8 =
1√
3


1 0 0

0 1 0

0 0 −2


Basis observables can be rescaled if another normalization constant is preferred. The rest

of this appendix uses the convention C = 1.

1Any real linear combination of N×N self-adjoint matrices is itself an N×N self-adjoint matrix. This is
the meaning of “real vector space,” even though the elements of the space are complex matrices.

2Because the elements of ΩN are self-adjoint, the † can be safely omitted.
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B.2 Fano coordinates

Given an N -level system, choose M = N2 − 1 basis observables {X̂m}. Normalize them

according to the convention Tr[X̂2
m] = 1. Let 1̂ denote the N×N identity matrix. Define the

central observable X̂0 to be the rescaled identity matrix X̂0 ≡ 1√
N

1̂. Then the set

{X̂0, X̂1, . . . , X̂M}

is an ordered orthonormal basis for ΩN . Any N -level observable Â can be written uniquely

as a real linear combination of these X̂ matrices:

Â = a0X̂0 + a1X̂1 + · · ·+ aMX̂M

a0 ≡ Tr[ÂX̂0] = 1√
N

Tr[Â] a1 ≡ Tr[ÂX̂1] · · · aM ≡ Tr[ÂX̂M ]

Any N -level density matrix ρ̂ is an N -level observable, so it can be written:

ρ̂ = r0X̂0 + r1X̂1 + · · ·+ rMX̂M

The X̂0 matrix has trace
√
N , and the other X̂ matrices are traceless. Because Tr[ρ̂] = 1

for any density matrix, the zeroth component must be r0 = 1/
√
N :

Tr[ρ̂] = r0Tr[X̂0] = r0

√
N = 1 ⇔ r0 = 1√

N

Define the Fano coordinates of ρ̂ to be the other M components r ≡ (r1, . . . rM ):

rm ≡ Tr[ρ̂X̂m] m ∈ {1, . . . ,M}

Any pure or mixed state can be represented by these M real numbers, each of which is the

expectation value of some basis observable X̂m. Expectation values of other observables are

given by dot products. For an observable Â, let A denote the real vector (a1, . . . , aM ):

〈A〉 = Tr[ρ̂Â] = r0A0 + r1A1 + · · ·+ rMAM = 1
NTr[Â] + r ·A

The condition that ρ̂ has non-negative eigenvalues and trace 1 requires Tr[ρ̂2] ≤ 1.

Tr[ρ̂2] ≤ 1 ⇔ r2
0 + r2

1 + · · ·+ r2
M ≤ 1 ⇔ |r| ≤ 1− 1

N

Pure states have Tr[ρ̂2] = 1, which constrains these states to the hypersphere |r|2 = 1− 1
N .

Unitary evolution requires pure states to evolve by rotations to other pure states. The

maximum-entropy mixed state is 1
N 1̂, which has Fano coordinates r = 0.
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Time evolution of r can be found by solving M coupled Ehrenfest equations for the expec-

tation values {rm}. The Ehrenfest theorem is

d

dt
〈Â〉 =

−ı
~
〈[Â, Ĥ]〉+ 〈∂tÂ〉

Substituting X̂m for Â and rm for 〈X̂m〉 = Tr[ρ̂X̂m],

~
d

dt
rm = −ı〈[X̂m, Ĥ]〉 = ı〈[Ĥ, X̂m]〉

The Hamiltonian Ĥ can also be written as a linear combination of X̂ matrices:

Ĥ = H0X̂0 +H1X̂1 + · · ·+HMX̂M

The H0 component does not affect time evolution because every matrix commutes with the

central observable X̂0 = 1√
N

1̂. The commutator [Ĥ, X̂m] is:

[Ĥ, X̂m] =
M∑
l=1

Hl[X̂l, X̂m]

For each commutator [X̂l, X̂m], define Ĉlm ≡ ı[X̂l, X̂m]. Note that each Ĉlm matrix is

traceless and self-adjoint, which means it can be uniquely specified by its Fano coordinates

Clm. Each time evolution equation can then be written in the form:

~
d

dt
rm =

M∑
l=1

Hl〈Ĉlm〉 =

M∑
l=1

HlTr[Ĉlmρ̂] =

M∑
l=1

HlClm · r

Weigert pointed out that a Fano-style parameterization of ρ̂ and Ĥ allows states to be

represented without using state vectors or density matrices:

...the parametrization of a density matrix by expectation values suggests a con-

ceptually interesting way to describe the time evolution of a quantum system

without invoking its density matrix or wave function. Instead, only expectation

values of Hermitian operators are used which can be measured directly contrary

to the wave function.[12]

From a group-theory point of view, {X̂m} form a basis for a matrix representation of the

special unitary Lie algebra su(N). The structure constants of su(N) determine the form of

the Ĉlm matrices in the time-evolution equation. Time evolution operators are elements of

the special unitary group SU(N) generated by su(N). For a physics-oriented introduction

to Lie groups and Lie algebras, see e.g. [115].



142

C MATLAB CODE

C.1 How to use the MATLAB code

This appendix contains the MATLAB scripts used for all simulations in Chapter 6. Each

script is designed to use Pauli coordinates and dimensionless units from Chapter 1.

StochasticLinear and StochasticNonlinear are Monte Carlo simulators which use the

Castell-Gaines strategy from Chapter 5 to generate sample states. The mean state r̄(t) is es-

timated by averaging all sample states. StochasticLinear uses the linear ExpMid method,

which is faster for linear drunk models but unsuitable for nonlinear models. Nonlinear

models require StochasticNonlinear, which uses the slower nonlinear ExpMid method.

Plotting for both of these scripts is handled by StochasticPlot.

StochasticPlot script plots the mean state and one sample state produced by either

StochasticLinear or StochasticNonlinear. Plots can be a time series for x(t), y(t), z(t),

trajectories on the Bloch sphere, or both. Multiple sample states can also be plotted on the

Bloch sphere. This script can also plot von Neumann entropy of the mean state and, for

testing purposes, radii of the first few sample states.

DrunkenMaster approximates the mean state r̄(t) of a linear drunk model. It uses the 4th-

order Magnus method with Gauss-Legendre quadrature from Chapter 5 to approximately

solve the master equation. It plots the mean-state r̄(t) in two ways: as time series for

x̄(t), ȳ(t), z̄(t) and as a trajectory on the Bloch sphere.

RamseyMaster simulates a full Ramsey experiment with multiple waiting times. For each

waiting time τj , it calculates the mean state by numerically integrating the drunken master

equation. Final z̄ coordinates are plotted versus τ .

Near the top of each script are two function handles called Mu and Sigma. Users specify the

mean field µ and volatility matrix Σ̂ by modifying these functions. For StochasticLinear,

Mu and Sigma can be constants or functions of t. For StochasticNonlinear, Mu and Sigma

can also be functions of x, y, and z. Mu should return a 3×1 column of real numbers, and

Sigma should return a 3×3 matrix of real numbers. The scripts will automatically calculate

sample times, Wong-Zakai corrections, Magnus matrices, and so on.
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InitialState should be a 3×1 column vector of initial Pauli coordinates x0, y0, z0. Initial

states are automatically normalized to have radius 1. (To use DrunkenMaster with a mixed-

state initial condition, simply comment out the line which normalizes InitialState.)

Users can also specify a start time, stop time, and sample rate. As a guideline, the sample

rate should be set to at least the Nyquist rate, which is 2 times the fastest-oscillating

frequency (in Hz, not rad/sec) of the system being simulated. This ensures that matrix

exponentials and Magnus series converge quickly; see Chapter 5 for details. Note that for

low sample rates, the interpolation used by MATLAB’s plot function may cause misleading

plots even if the numerical results are accurate.

If J timesteps are used, then DrunkenMaster saves a 1×(J+1) row called times and a

3×(J+1) matrix called mean path. Sample times are stored in times. The 1st, 2nd, and 3rd

rows of mean path are time series for the mean-state components x̄, ȳ, z̄. StochasticLinear

and StochasticNonlinear also output a 3×(J+1)×K 3D matrix called all paths, where

K is the number of sample states which were simulated. The rows (1,:,K), (2,:,K),

(3,:,K) are time series for the x, y, z coordinates of the Kth simulated state.

C.2 Scripts

StochasticLinear

% Simulate possible states of a drunk qubit and find their mean.

% This program is for linear models ONLY.

% Use StochasticPlot to plot the results.

%%%%% User -defined parameters go here

t_start = 0; % Initial time

t_stop = 20*pi; % Time at which measurement is performed

sample_rate = 25; % Number of steps per time unit

num_paths = 10; % Number of paths to simulate

% Expected B field as 3x1 column vector. (Can be function of t.)

Mu = @(t) [ 0.1* cos(t) ; 0 ; 1 ];

% Volatility as 3x3 matrix. (Can be function of t.)

BigSigma = @(t) [ 0.05,0,0 ; 0,0.05,0 ; 0,0,0.1 ];

% Initial state as 3x1 column vector. (Will be normalized automatically .)

InitialState = [0;0;1];

InitialState = InitialState / norm(InitialState );

%%%%% Simulation is here

% Make equally -spaced sample times

% Note: J steps means J+1 sample times
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J = ceil( sample_rate * (t_stop - t_start) );

times = 0:J;

dt = 1.0 / sample_rate;

sqrt_dt = sqrt(dt);

times = t_start + dt * times;

% Define rotation generators

Imat = [0,0,0; 0,0,-1; 0,1,0];

Jmat = [0,0,1; 0,0,0; -1,0,0];

Kmat = [0,-1,0; 1,0,0; 0,0,0];

% Paths will be stored in a 3x(J+1)xK matrix.

all_paths = zeros(3,J+1, num_paths );

% For each k, simulate one possible state

disp(’Simulating states ...’)

for k = 1: num_paths

% Each path is a matrix. jth column is [x;y;z] at jth time.

kth_path = zeros(3,J+1);

kth_path (:,1) = InitialState;

old_state = InitialState;

% For each j, move the old state forward one step

for j = 1:J

% Create rescaled column of standard normal randoms

dW = sqrt_dt * normrnd (0,1,3,1);

% Evaluate mu and sigma at midpoint of timestep

t_sharp = times(j) + 0.5*dt;

new_mu = Mu(t_sharp );

new_sigma = BigSigma(t_sharp );

% Evolve old_state forward one step

B = new_mu*dt + new_sigma*dW;

G = -1.0 * ( B(1)* Imat + B(2)* Jmat + B(3)* Kmat );

new_state = expm(G) * old_state;

% Store new_state and recycle it for next step

kth_path(:,j+1) = new_state;

old_state = new_state;

end

% Store the new path

all_paths (:,:,k) = kth_path;

% Progress indicator

if mod(k,10) == 0

disp(k)

end

end

% Mean_path is a 3x(J+1) matrix. jth column is mean state at jth time.

mean_path = mean(all_paths ,3);

%%%%% Delete temporary variables
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clearvars -except times all_paths mean_path

StochasticNonlinear

% Simulate possible states of a drunk qubit and find their mean.

% This program works for linear or nonlinear models.

% Use StochasticPlot to plot the results.

%%%%% User -defined parameters go here

t_start = 0; % Initial time

t_stop = 20*pi; % Time at which measurement is performed

sample_rate = 25; % Number of steps per time unit

num_paths = 10; % Number of paths to simulate

% Expected B field as 3x1 column vector. (Can be function of t,x,y,z.)

Mu = @(t,x,y,z) [ 0.1* cos(t) ; 0 ; 1 ];

% Volatility as 3x3 matrix. (Can be function of t,x,y,z.)

BigSigma = @(t,x,y,z) [...

0.05*(z-0.6), 0, 0 ;...

0, 0.05*(z-0.6) , 0 ;...

0, 0, 0.1 ];

% Initial state as 3x1 column vector. (Will be normalized automatically .)

InitialState = [0;0;1];

InitialState = InitialState / norm(InitialState );

%%%%% Simulate qubit paths

% Make equally -spaced sample times

% Note: J steps means J+1 sample times

J = ceil( sample_rate * (t_stop - t_start) );

times = 0:J;

dt = 1.0 / sample_rate;

sqrt_dt = sqrt(dt);

times = t_start + dt * times;

% Define rotation generators

Imat = [0,0,0; 0,0,-1; 0,1,0];

Jmat = [0,0,1; 0,0,0; -1,0,0];

Kmat = [0,-1,0; 1,0,0; 0,0,0];

% Paths will be stored in a 3x(J+1)xK matrix.

all_paths = zeros(3,J+1, num_paths );

% For each k, simulate one complete sample path

disp(’Simulating states ...’)

for k = 1: num_paths

% Each path is a matrix. jth column is [x;y;z] at jth time.

kth_path = zeros(3,J+1);

kth_path (:,1) = InitialState;

old_state = InitialState;

% For each j, generate an increment of B and calculate a new state
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for j = 1:J

% Create rescaled column of standard normal randoms

dW = sqrt_dt * normrnd (0,1,3,1);

% Evaluate mu and sigma at left end of timestep

t_old = times(j);

x_old = old_state (1);

y_old = old_state (2);

z_old = old_state (3);

mu_old = Mu(t_old ,x_old ,y_old ,z_old );

sigma_old = BigSigma(t_old ,x_old ,y_old ,z_old);

B_old = mu_old*dt + sigma_old*dW;

% Find midpoint state

G_old = -0.5 * ( B_old (1)* Imat + B_old (2)* Jmat + B_old (3)* Kmat );

r_mid = expm(G_old) * old_state;

% Evaluate mu and sigma at midpoint of timestep

t_mid = t_old + 0.5*dt;

x_mid = r_mid (1);

y_mid = r_mid (2);

z_mid = r_mid (3);

mu_mid = Mu(t_mid ,x_mid ,y_mid ,z_mid );

sigma_mid = BigSigma(t_mid ,x_mid ,y_mid ,z_mid);

B_mid = mu_mid*dt + sigma_mid*dW;

% Evolve old_state forward one step

G_mid = -1.0*( B_mid (1)* Imat + B_mid (2)* Jmat + B_mid (3)* Kmat);

new_state = expm(G_mid) * old_state;

% Store new_state and recycle it for next step

kth_path(:,j+1) = new_state;

old_state = new_state;

end

% Store the new path

all_paths (:,:,k) = kth_path;

% Progress indicator

if mod(k,10) == 0

disp(k)

end

end

% Mean_path is a 3x(J+1) matrix. jth column is mean state at jth time.

mean_path = mean(all_paths ,3);

%%%%% Delete temporary variables

clearvars -except times all_paths mean_path

StochasticPlot

% Plot output of DrunkLinear or DrunkNonlinear solvers.
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%%%%% User -defined parameters go here

plot_time_series = true; % Show time series plot?

plot_Bloch_ball = true; % Show Bloch -sphere trajectories?

num_sample_states = 1; % How many sample states to draw on sphere?

plot_entropy = true; % Show von Neumann entropy of mean state?

plot_radius = true; % Used to check if pure states stay pure

num_radial_states = 1; % How many states ’ radii to show?

close all

%%%%% Time series plot of mean state and a sample state

if plot_time_series

t_start = times (1);

t_stop = times(end);

f1 = figure(’Position ’ ,[0 ,700 ,1000 ,250]);

set(gcf ,’color’ ,[1 1 1])

% Plot first sample state

plot (...

times ,all_paths (1,:,1),’:b’ ,...

times ,all_paths (2,:,1),’:g’ ,...

times ,all_paths (3,:,1),’:r’)

axis([t_start ,t_stop ,-1,1])

hold all

% Plot mean state

plot (...

times ,mean_path (1,:),’b’ ,...

times ,mean_path (2,:),’g’ ,...

times ,mean_path (3,:), ’r’ ,...

’LineWidth ’ ,1.5)

hold off

end

%%%%% Bloch -ball plots of mean state and sample states

if plot_Bloch_ball

% Plot mean state in black

f2 = figure(’Position ’ ,[1000 ,550 ,400 ,400]);

set(gcf ,’color’ ,[1 1 1])

plot3 (...

mean_path (1,:),...

mean_path (2,:),...

mean_path (3,:),...

’LineWidth ’,1,’Color ’,’k’)

axis equal tight

axis([-1,1,-1,1,-1,1])

% Plot sample states

f3 = figure(’Position ’ ,[1000 ,0 ,400 ,400]);

set(gcf ,’color’ ,[1 1 1])

axis equal tight

axis([-1,1,-1,1,-1,1])

hold on
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for k = 1: num_sample_states

plot3 (...

all_paths (1,:,k),...

all_paths (2,:,k),...

all_paths (3,:,k),...

’LineStyle ’,’-’,’Color ’,’b’);

end

hold off

end

%%%%% Plot von Neumann entropy of mean state

if plot_entropy

f4 = figure(’Position ’ ,[0 ,350 ,1000 ,250]);

set(gcf ,’color’ ,[1 1 1])

binary_entropy = @(p) -p.*log2(p) - (1-p).* log2(1-p);

mean_r_squared = ...

mean_path (1 ,:).^2 ...

+ mean_path (2 ,:).^2 ...

+ mean_path (3 ,:).^2 ;

mean_r = sqrt(mean_r_squared );

p_series = 0.5*(1+ mean_r );

vN_entropy = binary_entropy(p_series );

plot(times ,real(vN_entropy),’k’,’LineWidth ’ ,1.5)

axis([t_start ,t_stop ,0 ,1])

end

%%%%% Plot radial error of sample states

if plot_radius

f5 = figure(’Position ’ ,[0 ,0 ,1000 ,250]);

set(gcf ,’color’ ,[1 1 1])

for path = 1: num_radial_states

r_squared = ...

all_paths (1,:,path ).^2 ...

+ all_paths (2,:,path ).^2 ...

+ all_paths (3,:,path ).^2 ;

radial_error = sqrt(r_squared) - 1.0;

plot(times ,radial_error)

hold all

end

hold off

end

%%%%% Delete temporary variables

clearvars -except times all_paths mean_path vN_entropy

DrunkenMaster

% Solve the master equation for the mean state of a drunk model.

% This program is for linear models ONLY.

%%%%% User -defined parameters go here

t_start = 0; % Initial time

t_stop = 40*pi; % Time at which measurement is performed
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sample_rate = 10; % Number of steps per time unit

% Expected B field as 3x1 column vector. (Can be function of t.)

Mu = @(t) [ 0.1* cos(t) ; 0 ; 1 ];

% Volatility as 3x3 matrix. (Can be function of t.)

Sigma = @(t) [ 0.05,0,0 ; 0,0.05,0 ; 0,0,0.1 ];

% Initial state as 3x1 column vector. (Will be normalized automatically .)

InitialState = [0;0;1];

InitialState = InitialState / norm(InitialState );

%%%%% Simulation is here

% Make equally -spaced sample times

% Note: J steps means J+1 sample times

J = ceil( sample_rate * (t_stop - t_start) );

times = 0:J;

dt = 1.0 / sample_rate;

times = t_start + dt * times;

% mean_path is a matrix. jth column is mean [x;y;z] at jth time.

mean_path = zeros(3,J+1);

mean_path (:,1) = InitialState;

old_state = InitialState;

% Define rotation generators and basis vectors

Imat = [0,0,0; 0,0,-1; 0,1,0];

Jmat = [0,0,1; 0,0,0; -1,0,0];

Kmat = [0,-1,0; 1,0,0; 0,0,0];

% This function will use Mu and BigSigma to find the generator

G = @(mu ,sig) -1.0*( mu(1)* Imat + mu(2)* Jmat + mu(3)* Kmat )...

+0.5*( sig ’*sig - norm(sig ,’fro’)^2* eye (3) );

% Calculate constants for Magnus method

c_left = 0.5 - sqrt (3)/6.0;

c_right = 0.5 + sqrt (3)/6.0;

cfactor = -1.0* sqrt (3)/12;

% For each j, move the old mean state forward one step

for j = 1:J

% Evaluate Mu and BigSigma at subsample times

t_L = times(j) + c_left*dt;

mu_L = Mu(t_L);

sig_L = Sigma(t_L);

G_L = G(mu_L ,sig_L);

t_R = times(j) + c_right*dt;

mu_R = Mu(t_R);

sig_R = Sigma(t_R);

G_R = G(mu_R ,sig_R);

% Calculate Magnus matrix

C = G_L*G_R - G_R*G_L;

Omega = 0.5*dt*(G_L + G_R) + dt*dt*cfactor*C;
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% Evolve old_state forward one step

new_state = expm(Omega) * old_state;

% Store new_state and recycle it for next step

mean_path(:,j+1) = new_state;

old_state = new_state;

end

%%%%% Plotting stuff

close all

% Plot mean state as time series

f1 = figure (1);

set(f1 ,’Position ’ ,[500 ,600 ,800 ,200]);

set(gcf ,’color’ ,[1 1 1])

axis([t_start ,t_stop ,-1,1])

hold on

plot(times ,mean_path (1,:),’b’);

plot(times ,mean_path (2,:),’g’);

plot(times ,mean_path (3,:),’r’);

legend(’x’,’y’,’z’);

hold off

% Plot mean state in Bloch ball

f2 = figure (2);

set(f2 ,’Position ’ ,[500 ,0 ,500 ,500]);

set(gcf ,’color’ ,[1 1 1])

plot3 (...

mean_path (1,:),...

mean_path (2,:),...

mean_path (3,:),...

’Color ’,’k’)

axis equal tight

axis([-1,1,-1,1,-1,1])

%%%%% Delete temporary variables

clearvars -except mean_path times

RamseyMaster

% Simulate a Ramsey -fringe experiment using the master equation.

% This program is for linear models ONLY.

%%%%% User -defined parameters go here

max_tau = 4*pi; % Longest waiting time to use

omega0 = 1; % Qubit ’s natural angular frequency

amp = 0.05; % Pulse amplitude

detuning = 0; % Pulse detuning

sample_rate = 10; % Number of steps per time unit

InitialState = [0;0;1]; % Initial state (not automatically normalized)

% Volatility as 3x3 matrix. (Can be function of t.)
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Sigma = @(t) [ 0.1,0,0 ; 0,0.1,0 ; 0,0,0.2 ];

%%%%% Calculate useful constants and define anonymous functions

% Useful numbers to calculate

% Note: num_taus is arbitrarily set to 12 for nice -looking plots.

omega1 = omega0 + detuning;

pulse_t = 0.5*pi/amp;

full_cycle = 2.0*pi/omega0;

num_taus = ceil (12.0* max_tau/full_cycle );

% Decide which values of tau to use and store them as a column

tau_list = linspace(0,max_tau ,num_taus)’;

% Store the final z coordinates as a column

final_z = zeros(num_taus ,1);

% Rotation generators

Imat = [0,0,0; 0,0,-1; 0,1,0];

Jmat = [0,0,1; 0,0,0; -1,0,0];

Kmat = [0,-1,0; 1,0,0; 0,0,0];

% Constants for Magnus method

dt = 1.0 / sample_rate;

c_left = 0.5 - sqrt (3)/6.0;

c_right = 0.5 + sqrt (3)/6.0;

cfactor = -1.0* sqrt (3)/12;

% Mean field is a piecewise function

Mu = @(t,tau) (t<= pulse_t )*[ 2.0* amp*cos(omega1*t) ; 0 ; omega0 ]...

+(t>pulse_t )*(t<= pulse_t+tau )*[ 0 ; 0 ; omega0 ]...

+(t>pulse_t+tau )*...

[2.0* amp*cos(omega1 *(t-tau -pulse_t ));0; omega0 ];

% This function will use Mu and BigSigma to find the generator

G = @(mu ,sig) -1.0*( mu(1)* Imat + mu(2)* Jmat + mu(3)* Kmat )...

+0.5*( sig ’*sig - norm(sig ,’fro’)^2* eye (3) );

%%%%% Simulation is here

disp(’Calculating ’);

disp(num_taus );

disp(’Ramsey fringes ...’);

% For each k, solve the master equation for a particular tau

% (This is inefficient , but often fast enough .)

for k = 1: num_taus

% Make equally -spaced sample times

t_stop = tau_list(k) + 2.0* pulse_t;

J = ceil( sample_rate * t_stop );

times = 0:J;

times = dt * times;

% Reset old_state and update tau

old_state = InitialState;

new_tau = tau_list(k);
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% For each j, move the old mean state forward one step

for j = 1:J

% Evaluate Mu and BigSigma at subsample times

t_L = times(j) + c_left*dt;

mu_L = Mu(t_L ,new_tau );

sig_L = Sigma(t_L);

G_L = G(mu_L ,sig_L);

t_R = times(j) + c_right*dt;

mu_R = Mu(t_R ,new_tau );

sig_R = Sigma(t_R);

G_R = G(mu_R ,sig_R);

% Calculate Magnus matrix

C = G_L*G_R - G_R*G_L;

Omega = 0.5*dt*(G_L + G_R) + dt*dt*cfactor*C;

% Evolve old_state forward one step

new_state = expm(Omega) * old_state;

% Store new_state and recycle it for next step

old_state = new_state;

end

% Save the final z coordinate

final_z(k) = new_state (3);

% Progress indicator

if mod(k,10) == 0

disp(k)

end

end

%%%%% Plotting stuff

close all

% Plot final_z versus tau

f1 = figure (1);

set(f1 ,’Position ’ ,[500 ,600 ,800 ,200]);

set(gcf ,’color’ ,[1 1 1])

axis([ tau_list (1), tau_list(end),-1,1])

hold on

plot(tau_list ,final_z ,’k.-’);

legend(’Final z’,’Location ’,’SouthEast ’)

hold off

%%%%% Delete temporary variables

clearvars -except mean_path times



153

LIST OF REFERENCES

[1] J. von Neumann (translated from German by R. T. Beyer), Mathematical Foundations
of Quantum Mechanics. Princeton University Press, 1955. 0.1, 1.1, 1.3, 2, 2.4

[2] U. Fano, “Description of states in quantum mechanics by density matrix and operator
techniques,” Rev. Mod. Phys., vol. 29, no. 1, 1957. 1, 1.1, 1.2, 1.2, 2.4, 7.3, B

[3] A. J. Leggett, “Superconducting qubits – a major roadblock dissolved?,” Science,
vol. 296, May 2002. 1.2, 6

[4] M. D. Shuster, “A survey of attitude representations,” J. of the Astronautical Sciences,
vol. 41, no. 4, p. 496, 1993. 1.3

[5] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single
trapped ions,” Rev. Mod. Phys., vol. 75, 2003. 1.4, 1
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