
Geometric numerical integrators

Books & Bagels interdisciplinary talk, June 2013
Sam Kennerly    Drexel class of 2013    PhD Physics

This presentation was made possible by a Drexel Office of Graduate Studies Dissertation Fellowship.

Except for OGS and GSA logos, all content © Sam Kennerly 2013. Licensed under a Creative 

Commons CC-BY 3.0 license. For license information, see http://creativecommons.org/licenses/by/3.0/



Ordinary differential equations

‣ Low-jargon version: We want to predict some number        which 
depends on some other number t. Let        denote the t derivative of       . 
This is the “rate of change” of x as t changes. Suppose we know that
        obeys an ordinary differential equation (ODE) of the form:

‣ Suppose we know          for some    . This is an initial value problem.
A numerical integrator is a program for solving these problems.

‣ The number we want to predict is the dependent variable x. I like to call 
the independent variable t “time,” but it can be any real number. 
Ordinary means t derivatives only; no other derivatives allowed!

‣ ODEs can include multiple variables                              and/or higher-
order derivatives like       , which is the rate of change of       . Reduction 
of order is a trick for writing any ODE as a first-order vector ODE:



Generator equations

‣ I use the name generator equation for any ODE of the form:

x(t) is a column vector whose components are dependent variables, G(t) 
is a matrix, and the dot means matrix multiplication.

‣ Any ODE can be rewritten in generator-equation form.

‣ Group theorists call G an infinitesimal generator. If G is constant, then the 
exact solution is “generated” by a matrix exponential:

If G is not constant, then things can get complicated. If G does not 
depend on x(t), then the ODE is linear. Otherwise it is nonlinear.

‣ If G is a nice, smooth function of x and t, then it is approximately 
constant over small timesteps. This was Sophus Lie’s big idea which led 
to modern theories of Lie groups and Lie algebras.



Symmetry and conservation laws

‣ In many applications, x(t) obeys some conservation law. Examples:

Classical mechanics: Energy and momentum are conserved.

Quantum mechanics: Wavefunctions remain normalized.

Engineering / Control Theory: Parameters are constrained to a surface.

Chemistry / Ecology / Economics: Lotka-Volterra V is constant.

‣ Roughly speaking, Noether’s theorem says: any system with a 
continuous symmetry group has a corresponding conservation law.

‣ Many numerical integrators (Euler, Runge-Kutta, Adams) ignore symmetry 
groups and violate conservation laws. Geometric integrators are 
designed to preserve symmetries and respect conservation laws.

‣ Examples: Symplectic integrators are used for orbital mechanics, particle 
physics, and molecular dynamics. Magnus expansion is used for nuclear 
magnetic resonance calculations in physics, chemistry, and medicine. It 
is also very good at solving finite-dimensional Schrödinger equations.



The exponential midpoint method

‣ The Euler method is a simple (and unstable) integrator:

‣ The exponential Euler method is a simple geometric integrator which 
calculates a matrix exponential on each timestep:

‣ The exponential midpoint method (ExpMid) uses the exponential Euler 
method to “look a half-step into the future” on each timestep:

‣ ExpMid is only a 2nd-order integrator, but it is general, easy to code, and 
very good at preserving Lie-group symmetries.



LINMAX and STRATOMAX

‣ LINMAX and STRATOMAX are open-source software packages I wrote 
for geometric numerical integration using MATLAB or Python / NumPy.
I use them in my thesis, but they could have many other applications!

‣ LINMAX uses a 6th-order Magnus expansion to integrate linear ODEs. It 
is available at http://sites.google.com/site/samkennerly/programs .

‣ STRATOMAX is a Monte Carlo simulator which combines ExpMid with a 
Castell-Gaines method for stochastic differential equations (SDEs).

http://sites.google.com/site/samkennerly/programs
http://sites.google.com/site/samkennerly/programs
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