Vectors and Linear Transformations

A vector space V is a set of things called basis vectors and some rules for making linear combinations of them:
$a \mathbf{x}+\mathrm{b} \mathbf{y}$ is a vector if \mathbf{x}, \mathbf{y} are vectors and a, b are numbers.
A linear transformation L is a map from one vector space to another that obeys the superposition principle:

$$
L(a x+b y)=a L x+b L y
$$

Every linear transformation can be represented by a matrix acting on a column vector and vice versa. This is important.

An inner product $\langle\mathbf{x} \mid \mathbf{y}\rangle$ maps two vectors to a number. The usual example is $x_{1}^{*} y_{1}+x_{2}^{*} y_{2}+\cdots$ but others exist. The inner product of a vector with itself defines a norm.

Unitary / Orthogonal

Unitary matrices obey $U^{-1}=U^{\dagger}$. Real unitary matrices are orthogonal. U matrices preserve the usual inner product: $\langle U \mathbf{x} \mid U \mathbf{y}\rangle=\langle\mathbf{x} \mid \mathbf{y}\rangle$. Each eigenvalue of U and the determinant of U must have complex magnitude 1.

The columns of \boldsymbol{U} form an orthonormal basis for \boldsymbol{V} (and so do the rows) if and only if \boldsymbol{U} is unitary. Two matrices L and M are similar if $M=U L U^{-1}$ for some unitary U.

Every rotation and/or parity transformation between two orthonormal bases is represented by a U and vice versa.

Matrix Arithmetic

To multiply two matrices $A B$, do this: $[A B]_{i j}=\sum_{k} A_{i k} B_{k j}$ (Note: a column vector is just a $n \times 1$ matrix.)
$(A B) \mathbf{x}$ produces the same vector as "do B, then do A to \mathbf{x}."
Matrices add component-wise, and $(A+B) \mathbf{x}=A \mathbf{x}+B \mathbf{x}$.
To transpose M, swap its rows and columns: $\left[M^{T}\right]_{i j}=M_{j i}$ An (anti) symmetric matrix equals its (minus) transpose.

The adjoint of M is its conjugate transpose: $\left[M^{\dagger}\right]_{i j}=M_{j i}^{*}$. Adjoint matrices obey the rule $\langle\mathbf{x} \mid M \mathbf{y}\rangle=\left\langle M^{\dagger} \mathbf{x} \mid \mathbf{y}\right\rangle$.

The inverse M^{-1} has determinant $(\operatorname{det}[M])^{-1}$ if $\operatorname{det}[M] \neq 0$. A singular matrix has determinant 0 and can't be inverted.

Transposes, adjoints and inverses obey a "backwards" rule:

$$
(A B)^{-1}=B^{-1} A^{-1} \quad(A B)^{T}=B^{T} A^{T} \quad(A B)^{\dagger}=B^{\dagger} A^{\dagger}
$$

Hermitian / Symmetric

Hermitian matrices are self-adjoint: $H^{\dagger}=H$. Real symmetric square matrices are Hermitian.

Eigenvalues of \boldsymbol{H} are real (but might be degenerate!). Eigenvectors of H form an orthogonal basis for V. (Eigenvectors corresponding to the same eigenvalue are not unique, but it is always possible to choose orthogonal ones.)

A real linear combination of Hermitian matrices is Hermitian.

Eigensystems and the Spectral Theorem

A normal matrix N satisfies $N N^{\dagger}=N^{\dagger} N$. Every normal matrix is similar to a diagonal matrix: $N=U D U^{-1}$ where U is unitary and D is diagonal. The elements of D are eigenvalues and the columns of U are eigenvectors of N. D is unique except that the order of eigenvalues is arbitrary. \mathbf{v}_{j} is an eigenvector of N with eigenvalue λ_{j} if and only if $N \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}$.

The spectrum of N (the set of its eigenvalues) can be found by solving $\operatorname{det}[N-\lambda 1]=0$, the characteristic polynomial of N. The product of all eigenvalues of N is $\operatorname{det}[N]$ and the sum of eigenvalues is $\operatorname{tr}[N]$, the trace of N (the sum of its diagonal elements). Two similar matrices L and M have the same spectrum, determinant, and trace (but the converse is not true).

Misc. Terminology

A matrix P is idempotent if $P P=P$. An idempotent Hermitian matrix is a projection. A positive-definite matrix has only positive real eigenvalues. Z is nilpotent if $Z^{n}=0$ for some number n. The commutator of L and M is $[L, M]=L M-M L$.

Matrix Exponentials

The exponential map of a matrix M is $\operatorname{EXP}[M]=1+M+\frac{1}{2!} M^{2}+\cdots+\frac{1}{k!} M^{k}+\cdots$. The solution to the differential equation $\frac{d}{d t} \mathbf{x}(t)=M \mathbf{x}(t)$ is $\mathbf{x}(t)=\operatorname{EXP}[M t] \cdot \mathbf{x}(0)$. EXP has some, but not all, of the properties of the function e^{x} :
in general: $\quad\left(e^{M}\right)^{-1}=e^{-M} \quad\left(e^{M}\right)^{T}=e^{M^{T}} \quad\left(e^{M}\right)^{\dagger}=e^{M^{\dagger}} \quad e^{(a+b) M}=e^{a M} e^{b M} \quad \operatorname{det}\left[e^{M}\right]=e^{\operatorname{tr}[M]}$ only if M and N commute: $e^{M+N}=e^{M} e^{N} \quad e^{N} M e^{-N}=M \quad$ only if N is invertible: $e^{N M N^{-1}}=N e^{M} N^{-1}$.

