Matrix Cheat Sheet

Vectors and Linear Transformations	Matrix Arithmetic
A vector space <i>V</i> is a set of things called basis vectors and some rules for making linear combinations of them:	To multiply two matrices <i>AB</i> , do this: $[AB]_{ij} = \sum_{k} A_{ik}B_{kj}$ (Note: a column vector is just a <i>n</i> x 1 matrix.)
ax+by is a vector if x, y are vectors and a,b are numbers.	$(AB)\mathbf{x}$ produces the same vector as "do B , then do A to \mathbf{x} ."
A linear transformation <i>L</i> is a map from one vector space to another that obeys the superposition principle:	Matrices add component-wise, and $(A+B)\mathbf{x} = A\mathbf{x} + B\mathbf{x}$.
$L(a\mathbf{x}+b\mathbf{y}) = aL\mathbf{x} + bL\mathbf{y}$	To transpose M , swap its rows and columns: $[M^T]_{ij} = M_{ji}$ An (anti) symmetric matrix equals its (minus) transpose.
Every linear transformation can be represented by a matrix acting on a column vector and vice versa. This is important.	The adjoint of <i>M</i> is its conjugate transpose: $[M^{\dagger}]_{ij} = M_{ji}^{*}$. Adjoint matrices obey the rule $\langle \mathbf{x} M \mathbf{y} \rangle = \langle M^{\dagger} \mathbf{x} \mathbf{y} \rangle$.
An inner product $\langle \mathbf{x} \mathbf{y} \rangle$ maps two vectors to a number. The usual example is $x_1^* y_1 + x_2^* y_2 + \cdots$ but others exist. The inner product of a vector with itself defines a norm .	The inverse M^{-1} has determinant (det[M]) ⁻¹ if det[M] $\neq 0$. A singular matrix has determinant 0 and can't be inverted.
	Transposes, adjoints and inverses obey a "backwards" rule:
Unitary / Orthogonal	$(AB)^{-1} = B^{-1}A^{-1} (AB)^T = B^T A^T (AB)^{\dagger} = B^{\dagger}A^{\dagger}$
Unitary matrices obey $U^{-1} = U^{\dagger}$. Real unitary matrices are orthogonal . <i>U</i> matrices preserve the usual inner product: $\langle U\mathbf{x} U\mathbf{y}\rangle = \langle \mathbf{x} \mathbf{y}\rangle$. Each eigenvalue of <i>U</i> and the determinant of <i>U</i> must have complex magnitude 1.	Hermitian / Symmetric Hermitian matrices are self-adjoint: $H^{\dagger} = H$. Real
The columns of <i>U</i> form an orthonormal basis for <i>V</i> (and	symmetric square matrices are Hermitian.
so do the rows) if and only if U is unitary. Two matrices L and M are similar if $M = ULU^{-1}$ for some unitary U .	Eigenvalues of <i>H</i> are real (but might be degenerate!). Eigenvectors of <i>H</i> form an orthogonal basis for <i>V</i> . (Eigenvectors corresponding to the same eigenvalue are not
Every rotation and/or parity transformation between two orthonormal bases is represented by a <i>U</i> and vice versa.	unique, but it is always possible to choose orthogonal ones.) A <i>real</i> linear combination of Hermitian matrices is Hermitian.
Eigensystems and the Spectral Theorem	

A normal matrix *N* satisfies $NN^{\dagger} = N^{\dagger}N$. Every normal matrix is similar to a diagonal matrix: $N = UDU^{-1}$ where *U* is unitary and *D* is diagonal. The elements of *D* are **eigenvalues** and the columns of *U* are **eigenvectors** of *N*. *D* is unique except that the order of eigenvalues is arbitrary. \mathbf{v}_j is an eigenvector of *N* with eigenvalue λ_j if and only if $N\mathbf{v}_j = \lambda_j \mathbf{v}_j$.

The **spectrum** of *N* (the set of its eigenvalues) can be found by solving $det[N - \lambda 1] = 0$, the **characteristic polynomial** of *N*. The product of all eigenvalues of *N* is det[N] and the sum of eigenvalues is tr[N], the **trace** of *N* (the sum of its diagonal elements). Two similar matrices *L* and *M* have the same spectrum, determinant, and trace (but the converse is not true).

Misc. Terminology

A matrix *P* is **idempotent** if PP = P. An idempotent Hermitian matrix is a **projection**. A **positive-definite** matrix has only positive real eigenvalues. *Z* is **nilpotent** if $Z^n = 0$ for some number *n*. The **commutator** of *L* and *M* is [L,M] = LM - ML.

Matrix Exponentials

The **exponential map** of a matrix M is $EXP[M] = 1 + M + \frac{1}{2!}M^2 + \dots + \frac{1}{k!}M^k + \dots$. The solution to the differential equation $\frac{d}{dt}\mathbf{x}(t) = M\mathbf{x}(t)$ is $\mathbf{x}(t) = EXP[Mt] \cdot \mathbf{x}(0)$. EXP has some, but not all, of the properties of the function e^x :

in general: $(e^M)^{-1} = e^{-M} (e^M)^T = e^{M^T} (e^M)^{\dagger} = e^{M^{\dagger}} e^{(a+b)M} = e^{aM}e^{bM} \det[e^M] = e^{\operatorname{tr}[M]}$ only if *M* and *N* commute: $e^{M+N} = e^M e^N e^N M e^{-N} = M$ only if *N* is invertible: $e^{NMN^{-1}} = N e^M N^{-1}$.