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Stochastic Models of Quantum Decoherence

1

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Simplifications

‣ Orthodox quantum mechanics
Assume von Neumann’s Mathematical Foundations of QM.
Some interesting questions I am not attempting to answer:
  0) Can decoherence explain the measurement problem?
  1) Is the stochastic interpretation of QM valid?
  2) Who was right, Bohr or Einstein?

‣ Finite-dimensional Hilbert spaces
No systems with infinitely-many energy eigenstates.
Pure states are column vectors. Operators are matrices.

‣ No relativity
The Schrödinger equation is assumed correct.
Quantum fields and Lorentz covariance are ignored.
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These are good questions, but I have to graduate this year.



What is a qubit?

Above: Any qubit pure state corresponds 
to a point on the Bloch sphere.

Right: Example phase qubit design by 
team at U. of Maryland, College Park. 
From Phys. Rev. B, vol. 77 (2008)
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X’s in circuit diagram are superconducting Josephson junctions.
Don’t worry about the details - the point is, real qubits can be complicated things.



Qubit mixed states

‣ A classical bit is a system with two states named 0 and 1.

‣ A qubit is a system with two basis states named        and       . 
Its state can also be a superposition of these basis states:

‣ Density matrices are useful “when we do not even know what state is actually 
present.” For each possible state, define a projection operator:

‣ If possible state       occurs with probability      , then define a mixed state:  
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Quote is from von Neumann, “Mathematical Foundations of Quantum Mechanics”



Qubits as geometric objects

‣ The Bloch sphere is a common way to visualize
qubit states. The ground state is at the North pole.
The excited state is at the South pole.

‣ Pure states are points on the sphere.
Mixed states are points inside the sphere.

‣ Any 2x2 self-adjoint complex matrix is a real linear
combination of Pauli matrices and the identity matrix:

‣ Density matrices have               and                                     .
Define Pauli coordinates x,y,z of a (pure or mixed) qubit state this way.
The vector r = (x,y,z) is the state’s Bloch vector in Cartesian coordinates.
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Fano wrote an instruction manual for generalizing this idea to N-level systems: Rev. Mod. 
Phys., vol. 29, no. 1 (1957)



Spin-1/2 parameters

‣ Time evolution is found by solving the Liouville-von Neumann equation (LvN), 
which is the density-matrix version of the Schrödinger equation:

‣ Any qubit can be represented by a fictional spin-½ in a magnetic field:

This is equivalent to the LvN equation if                        are the Pauli coordinates 
of         . (The w component does not affect time evolution.)  

‣ Measurement probabilities are found by dot products. For a qubit observable 
A (in Pauli coordinates), the probability of an “up” or “down” result is:

The w component does not affect these either.
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Spin-1/2 parameters have become a common language for comparing different qubit 
designs.



Canonical mixed states

‣ The von Neumann entropy of     is the Shannon entropy of its eigenvalues:

S is zero for pure states. For qubits, it depends on radius only.

‣ S is used to calculate thermal equilibrium canonical mixed states:

β is inverse temperature, a.k.a. “greed for energy,” and                               . 

‣ In Pauli coordinates, canonical qubit mixed states are on the z-axis.

In the limit β→0, the canonical mixed state is 0.
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If the surprisal of an outcome with probability p is defined to be log(1/p), then Shannon 
entropy is “expected surprisal.”



Decoherence

‣ Decoherence
Qubits in real experiments appear to degrade from pure to mixed states.

Both images are Rabi oscillation tests from Phys. Rev. B, vol. 77 (2008).
Theory: Undamped sinusoidal oscillations. Experiments: Exponential decay!

‣ Quantum Loschmidt paradox: irreversible change from reversible equations?

0) Schrödinger and Liouville-von Neumann equations are time-reversible.
States evolve by unitary transformations which conserve von Neumann entropy.

1) Experiments routinely show irreversible entropy production.
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This is the same U. Maryland phase qubit paper from before. Similar exponentially-decaying 
Rabi oscillation pictures are in nearly every experimental qubit paper I’ve read.



Illusory decoherence

Left: Mach-Zehnder neutron interferometer from Allyson’s Choice thought 
experiment and Allyson’s decrypted detector count data.
Right: Monte Carlo simulations of Zech’s Qubit thought experiment color-coded by 
stray field strength. (Red is weakest, blue is strongest.)
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I wrote a paper about the left picture and made a poster about the right picture.



Inferring the state of a qubit

‣ The Law of Large Numbers can be used to infer a qubit state.
A qubit is evolved for some time t, and an observable (e.g.      ) is measured.
If many independent, identical trials are performed, the average of all results
converges to its expected value. In this example, it’s                          .

‣ Fluctuations can appear due to sample-size statistical errors.
No laboratory has enough graduate students to perform ∞ experimental trials.

estimated                                                 estimated
x,y,z with                                                   x,y,z with
100 trials:                                                 1000 trials:

‣ Dissipation can appear due to non-identical trials. If we don’t know what state 
is actually present on each trial, we can represent it as a random variable.
Measurement probabilities are found by the Law of Total Probability:
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Reminder: A is a vector of Pauli coordinates of some observable.
pk is the probability of state rk occurring on any given trial.



True states, mean states, and estimated states

‣ Assume the true state of a system is always pure on each trial:

‣ The mean state of a model is the expectation value of the true state:

Qubit mean states are points on or inside the Bloch sphere: 
Not-identical trials  ⇒  mean state can gain entropy!

‣ Components of the estimated state of a dataset are the sample means X,Y,Z 
of Pauli coordinates x,y,z. Estimated states are points inside a cube:

‣ An estimated state is a maximum likelihood estimator, not a physical state.
In the limit of many trials, estimated states converge to the mean state.
Statistical estimators can gain entropy even if true states are always pure.
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Likelihood is not the same as probability; see Bayes’ rule for details.
Fluctuations can be reduced by doing more trials, but it’s hard to ensure trials are identical.



Allyson’s Choice thought experiment

‣ Bob’s intended experiment
Professor Bob sends a neutron through a Mach-Zehnder interferometer.
The neutron’s wavefunction acquires a phase shift along either path.

Plot of detector counts
vs. phase difference φ:

‣ Allyson’s shenanigans
On each trial of the experiment, Allyson flips a fair coin.
If heads, she does what Bob says. If tails, she reverses the orientation of      . 

heads                                                      tails
results:                                                    results:
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Allyson’s Choice was published in Foundations of Physics, vol. 42, no. 9 (2012)



Information was encrypted, not destroyed

‣ Bob sees decoherence
Bob’s plot shows no evidence of de Broglie
interference. His students conclude that
QM is wrong and classical mechanics rules.

‣ Allyson can decrypt the data
Allyson can partition Bob’s data into “heads only” and “tails only” subsets.
Each of those datasets shows: QM rules, classical mechanics is wrong.

‣ ...unless she forgets the password!
To partition the data, Allyson needs to know the results of her coin tosses.
She has encrypted Bob’s data with a provably-secure one-time pad.

‣ Decoherence by 1000 small cuts
Suppose Allyson and Bob do the experiment again the way Bob intended, but 
now φ is random and normally-distributed on each trial. The mean state is:
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μ and σ are mean and stdev for the random number φ. This mean state is pure iff σ=0.



Zech’s qubit

‣ Zech’s qubit is a spin-½ in a uniform, constant B field in the z direction. At time 
t=0, a stray field in the x direction “leaks” through the qubit’s shielding. The 
amplitude and duration of the stray field are random and uniformly-distributed 
on some intervals. Monte Carlo simulations of 5000 possible states are below:

Colors indicate maximum possible stray-field strength. (Blue is strongest.)

‣ If                           , then in the long-duration limit, the mean state is:

   

‣ If Zech has recorded the amplitude and duration of the stray field, then he can 
reverse its effect. These numbers are the password for unscrambling his qubit.
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For real (and more sophisticated) versions of this experiment, look up engineered 
decoherence, e.g. Myatt, et al. Nature, vol. 403 (2000)



Drunk qubits

What theory says they do What experiments say they do What they really do

or maybe this... or sometimes this... or something like this...
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If I have to describe the thesis with one slide, this is it.



Stochastic differential equations (SDEs)

‣ For more realistic models, use stochastic processes which change in time.

The mean field μ is a real 3x1 column vector, the volatility matrix Σ is a real 
3x3 matrix, and         is a real 3x1 column of independent Wiener processes.

‣         is a useful heuristic for Gaussian white noise, but it is ambiguous because 
the Wiener process is not differentiable. Stochastic calculus is required.

‣ If we use Itō calculus, then the Chain Rule must be replaced by Itō’s Lemma:

‣ If we use Stratonovich-Fisk calculus (SF), then the ordinary Chain Rule works, 
but expectation values are harder to calculate. For equations of the form above, 
we must use SF calculus to keep states on the Bloch sphere.
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The Wiener process is, roughly speaking, a very fast random walk with very small steps.



The drunken master equation

‣ For every SF SDE, there is an Itō SDE with the same solution and vice versa.  
Converting from SF to Itō form provides a shortcut for calculating mean states.

‣ For linear drunk models, μ and Σ do not depend on r. The mean state obeys 
an ordinary differential equation which I call the drunken master equation:

‣ The Bloch equation from NMR is commonly used to model decoherent qubits. 
It predicts exponential decay of r(t) to an equilibrium state on the z axis.

‣ If the equilibrium state is 0, then the Bloch equation is a special case of the 
drunken master equation. To derive it, set the volatility matrix Σ to:
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The name “drunken master equation” is short for “Kossakowski-Lindblad master equation for 
the mean state of a linear drunk model.”



Simulations using the linear Bloch model

Left: Pauli coordinates x(t), y(t), z(t) for mean state (solid lines) and one simulated 
true state (dotted lines). Right: Mean state trajectory. Both use                         .

Below: Simulated true states for one full Rabi cycle starting at North pole.
Black is noise-free. Colors indicate low, medium, and high volatility.  
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Black is sober, blue had a glass of wine, green had a few, and red needs help getting home.



Simulated Rabi cycles

‣ Rabi cycles result from applying a weak oscillating B component in the x 
direction at the qubit’s natural frequency                                     .
Ideally, the qubit’s z coordinate oscillates indefinitely.

Above: Monte Carlo simulated Rabi cycles. Colors are medium and high volatility.  
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Exponential decays are also shown for reference. T1 and T2 are calculated using the formulas 
from 2 slides ago.



Nonlinear drunk models

‣ For nonsingular Σ, linear models have no steady-state solution except    = 0.

‣ If μ and/or Σ depend on the qubit’s state r, then the SDE is nonlinear.
The drunken master equation is not valid for nonlinear models.

‣ Monte Carlo simulations are still possible. This example surplus energy model 
has a diagonal volatility matrix Σ which is singular when z = 0.6. The mean state 
of this model appears to approach a canonical mixed state on the z axis.

Left: Pauli coordinates x(t), y(t), z(t) for mean state (solid lines) and one simulated 
true state (dotted lines). Right: Mean state trajectory. Both use                         .
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Note that the sample state (dotted lines in the time series) gets “stuck” near z=0.6, but it 
eventually breaks free.



A loophole in Loschmidt’s paradox

Image © Alan Cleaver 2011. Licensed under a Creative Commons CC-BY 2.0 license.
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Loschmidt asked how Boltzmann’s H-theorem derived irreversible change from reversible 
classical mechanics. Short answer: Boltzmann averaged over some random terms.



Anthropomorphic entropy and the shuffle hypothesis

‣ Drunk models do not define the “entropy of a qubit.” Entropy is assigned 
only to mean states, estimated states, and random variables.

‣ Jaynes advocated a more general version of the same idea:

“It is possible to maintain the view that the system is at all times in some definite
but unknown pure state... it is not the physical process that is irreversible, but rather
our ability to follow it.” Phys. Rev., vol. 108, no. 2 (1957)

‣ Jaynes said he got this idea from Wigner’s phrase “entropy is an 
anthropomorphic concept.” Eddington’s shuffle hypothesis is similar:

“Whenever anything happens which cannot be undone, it is always reducible to
the introduction of a random element analogous to that introduced by shuffling.”
The Nature of the Physical World (1929)

‣ Shuffles are reversible permutations, but a good shuffle irreversibly degrades 
players’ ability to predict the order of the cards. Shuffles, encryption, and drunk 
models are reversible in principle but seem irreversible in practice.
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If Jaynes is right, then “the qubit gained entropy” is misleading. Instead, we should say “our 
model can no longer predict the true state of the qubit.”



Drunk models decoherence is “fake”

‣ The word “decoherence” has acquired various different definitions. Joos, et al. 
define it as damping of off-diagonal density matrix terms in some basis. 
They suggest partitioning decoherence into 3 categories (my paraphrasing):

1. True decoherence: The qubit we’re describing has become entangled with
its environment. The (qubit U environment) state is not a direct product of
a qubit state and an environment state.

2. False decoherence: The state of our qubit happens to be       or       right 
now. In this case, off-diagonal terms of ρ disappear even for pure states.

3. Fake decoherence: We averaged over some ensemble of states.

‣ According to these definitions, drunk models describe fake decoherence.
Mean states are averages over possible true states. Estimated states are 
averages of measurement counts. To accurately describe “true” decoherence, 
we need a mathematical representation of our qubit’s environment.
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Joos, et al. “Decoherence and the Appearance of a Classical World in Quantum Theory” (2003)



Kossakowski-Lindblad master (KLM) equations

‣ KLM equations describe linear non-unitary time evolution of systems.
The (qubit U environment) system evolves unitarily. A partial trace is taken
over uncontrolled degrees of freedom. KLM equations are of the form:

where            are traceless operators which are Hilbert-Schmidt orthogonal,
and             are coefficients of a positive (possibly complex) matrix.  

‣ Qubit drunken master equations are KLM equations. Written in tems of
Pauli coordinates, a drunken master equation is a KLM equation with:

‣ Not all KLM equations are drunken master equations. All KLM equations are 
linear, and some have a nonzero steady-state solution. Linear drunk models 
cannot have a nonzero steady-state solution.
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Conclusions and future work

! Drunk models provide a quantitative formalism for “fake” decoherence 
caused by non-identical trials during qubit experiments.

! Drunk models use unitary evolution to predict the appearance of 
decoherence, which avoids the quantum Loschmidt paradox.

! The only equilibrium mean state for linear drunk models is 0. Except for this 
disagreement, the Bloch equation can be derived from a drunk model.

? Simulations suggest nonlinear drunk models can evolve to a canonical mixed 
state, but they need not obey a linear master equation. Is this useful?

? Every qubit drunken master equation is a Kossakowski-Lindblad master 
equation. Do linear drunk models and KLM disagree for N-level systems?

? How do we model noise that is not Gaussian, not white, and/or not Markovian?
(This is a very difficult mathematical question, and not just for qubits!)
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The last word

“You should call it entropy, for two reasons. In 
the first place your uncertainty function has 
been used in statistical mechanics under that 
name, so it already has a name. In the second 
place, and more important, nobody knows 
what entropy really is, so in a debate you will 
always have the advantage.”
- John von Neumann, to Claude Shannon
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